A020837 Decimal expansion of 1/sqrt(80) = sqrt(5)/20.
1, 1, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3
Offset: 0
Examples
sqrt(5)/20 = 0.111803398874989484820458683436563811772... sqrt(5)/2 = 1.118033988749894848204586834365638117720...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.13 Steinitz constants, p. 241.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Étienne Ghys and Jos Leys, Un arbre pythagoricien — Images des Mathématiques, CNRS, 2013.
- Index entries for algebraic numbers, degree 2
Programs
-
Mathematica
RealDigits[1/Sqrt[80], 10, 120][[1]] (* Harvey P. Dale, May 01 2012 *)
-
PARI
sqrt(1/80) \\ Charles R Greathouse IV, Apr 25 2016
Formula
Equals 1/sqrt(80) = sqrt(5)/20 = (-1 + 2*phi)/20, with phi from A001622.
Equals 0.1 * Sum_{k>=0} binomial(2*k,k)/20^k. - Amiram Eldar, Aug 04 2022
Comments