cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A296184 Decimal expansion of 2 + phi, with the golden section phi from A001622.

Original entry on oeis.org

3, 6, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9
Offset: 1

Views

Author

Wolfdieter Lang, Jan 08 2018

Keywords

Comments

In a regular pentagon, inscribed in a unit circle this equals twice the largest distance between a vertex and a midpoint of a side.
This is an integer in the quadratic number field Q(sqrt(5)).
Only the first digit differs from A001622.

Examples

			3.618033988749894848204586834365638117720309179805762862135448622705260462...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.25, p. 417.

Crossrefs

2 + 2*cos(2*Pi/n): A104457 (n = 5), A116425 (n = 7), A332438 (n = 9), A019973 (n = 12).

Programs

Formula

Equals 2 + A001622 = 1 + A104457 = 3 + A094214.
From Christian Katzmann, Mar 19 2018: (Start)
Equals Sum_{n>=0} (15*(2*n)!+40*n!^2)/(2*n!^2*3^(2*n+2)).
Equals 5/2 + Sum_{n>=0} 5*(2*n)!/(2*n!^2*3^(2*n+1)). (End)
Constant c = 2 + 2*cos(2*Pi/10). The linear fractional transformation z -> c - c/z has order 10, that is, z = c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(c - c/(z)))))))))). - Peter Bala, May 09 2024

A079585 Decimal expansion of c = (7-sqrt(5))/2.

Original entry on oeis.org

2, 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 1

Views

Author

Benoit Cloitre, Jan 26 2003

Keywords

Comments

c is an integer in the quadratic number field Q(sqrt(5)). - Wolfdieter Lang, Jan 08 2018
From Amiram Eldar, Jul 16 2021: (Start)
Sum_{k>=0} 1/F(2^k) is sometimes called "Millin series" after D. A. Millin, a high school student at Annville, Pennsylvania, who posed in 1974 the problem of proving that it equals (7-sqrt(5))/2. This identity was in fact already known to Lucas in 1878.
Mahler (1975) provided a false proof that this sum is transcendental. The mistake was corrected in Mahler (1976). (End)
The name "Millin" was a misprint of "Miller", the author of the problem was Dale A. Miller. His name was corrected in the solution to the problem (1976). - Amiram Eldar, Feb 29 2024

Examples

			c = 2.3819660112501051517954131656343618822796908201942371378645513772947...
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 65.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.2, p. 7.
  • Ross Honsberger, Mathematical Gems III, Washington, DC: Math. Assoc. Amer., 1985, pp. 135-137.
  • Alfred S. Posamentier and Ingmar Lehmann, [Phi], The Glorious Golden Ratio, Prometheus Books, 2011, page 75.

Crossrefs

Programs

Formula

c = (7-sqrt(5))/2 = 4 - phi, with phi from A001622.
c = 7/2 - 10*A020837.
c = Sum_{k>=0} 1/F(2^k), where F(k) denotes the k-th Fibonacci number; c = Sum_{k>=0} 1/A058635(k).
Periodic continued fraction representation is [2, 2, 1, 1, 1, 1, ....]. - R. J. Mathar, Mar 24 2011
Minimal polynomial: 11 - 7*x + x^2. - Stefano Spezia, Oct 16 2024

A176055 Decimal expansion of (2+sqrt(5))/2.

Original entry on oeis.org

2, 1, 1, 8, 0, 3, 3, 9, 8, 8, 7, 4, 9, 8, 9, 4, 8, 4, 8, 2, 0, 4, 5, 8, 6, 8, 3, 4, 3, 6, 5, 6, 3, 8, 1, 1, 7, 7, 2, 0, 3, 0, 9, 1, 7, 9, 8, 0, 5, 7, 6, 2, 8, 6, 2, 1, 3, 5, 4, 4, 8, 6, 2, 2, 7, 0, 5, 2, 6, 0, 4, 6, 2, 8, 1, 8, 9, 0, 2, 4, 4, 9, 7, 0, 7, 2, 0, 7, 2, 0, 4, 1, 8, 9, 3, 9, 1, 1, 3, 7, 4, 8, 4, 7, 5
Offset: 1

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Continued fraction expansion of (2+sqrt(5))/2 is A010698.
a(n) = A020837(n-1) for n > 1; a(1) = 2.

Examples

			2.11803398874989484820...
		

Crossrefs

Cf. A002163 (sqrt(5)), A020837 (1/sqrt(80)), A010698 (repeat 2, 8).

Programs

  • Mathematica
    RealDigits[GoldenRatio + 1/2, 10, 100][[1]] (* Amiram Eldar, Jun 06 2021 *)

Formula

Equals 1/2 + phi, with phi = A001622.
From Amiram Eldar, Jun 06 2021: (Start)
Equals 1 + Sum{k>=0} 1/(Fibonacci(2*k+1)+1).
Equals 1 + Sum{k>=0} binomial(2*k,k)/20^k. (End)

A204188 Decimal expansion of sqrt(5)/4.

Original entry on oeis.org

5, 5, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8, 7
Offset: 0

Views

Author

Jonathan Sondow, Jan 14 2012

Keywords

Comments

Equals Product_{n>=1} (1 - 1/A000032(2^n)).
Essentially the same as A019863 and A019827. - R. J. Mathar, Jan 16 2012
The value is the distance of the W point of the Wigner-Seitz cell of the body-centered cubic lattice (that is the Brioullin zone of the face-centered cubic lattice) to its four nearest neighbors. Let the points of the simple cubic lattice be at (1,0,0), (0,1,0), (1,0,0) etc and the point in the cube center at (1/2, 1/2, 1/2). Then W is at (0, 1/4, 1/2) [or any of the 24 symmetry related positions like (0, 3/4, 1/2), (0, 1/2, 1/4) etc.], and the four lattice points closest to W are at (-1/2, 1/2, 1/2), (0,0,0), (1/2, 1/2, 1/2) and (0,0,1). - R. J. Mathar, Aug 19 2013

Examples

			0.5590169943749474241022934171828190588601545899028814310677243113526302...
		

Crossrefs

Programs

Formula

Equals sqrt(5)/4 = (-1 + 2*phi)/4, with the golden section phi from A001622.
Equals 5*A020837.

A208899 Decimal expansion of sqrt(5)/3.

Original entry on oeis.org

7, 4, 5, 3, 5, 5, 9, 9, 2, 4, 9, 9, 9, 2, 9, 8, 9, 8, 8, 0, 3, 0, 5, 7, 8, 8, 9, 5, 7, 7, 0, 9, 2, 0, 7, 8, 4, 8, 0, 2, 0, 6, 1, 1, 9, 8, 7, 0, 5, 0, 8, 5, 7, 4, 7, 5, 6, 9, 6, 5, 7, 4, 8, 4, 7, 0, 1, 7, 3, 6, 4, 1, 8, 7, 9, 2, 6, 8, 2, 9, 9, 8, 0, 4, 8, 0, 4, 8, 0, 2, 7, 9, 2, 9, 2, 7, 4, 2, 4, 9
Offset: 0

Views

Author

R. J. Mathar, Mar 03 2012

Keywords

Comments

Equals the absolute value of the cosine of the dihedral angle between two adjacent faces of the regular icosahedron.

Examples

			0.7453559924...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[5]/3,10,120][[1]] (* Harvey P. Dale, Jul 03 2013 *)
  • PARI
    first(n) = default(realprecision, max(28, n+10)); digits(((sqrt(5)/3)*10^n)\1) \\ David A. Corneth, Dec 19 2022

Formula

Equals A002163/3 = 20*A020837/3.
Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)/5^k. - Amiram Eldar, Aug 03 2020

A242703 Decimal expansion of sqrt(7)/2.

Original entry on oeis.org

1, 3, 2, 2, 8, 7, 5, 6, 5, 5, 5, 3, 2, 2, 9, 5, 2, 9, 5, 2, 5, 0, 8, 0, 7, 8, 7, 6, 8, 1, 9, 6, 3, 0, 2, 1, 2, 8, 5, 5, 1, 2, 9, 5, 9, 1, 5, 4, 1, 2, 2, 5, 0, 9, 0, 1, 8, 4, 1, 6, 7, 2, 2, 9, 6, 0, 0, 5, 3, 4, 4, 1, 1, 6, 1, 5, 1, 4, 1, 8, 1, 3, 8, 8, 0, 1, 9, 6, 4, 4, 3, 2, 3, 7, 2, 7
Offset: 1

Views

Author

Alonso del Arte, May 20 2014

Keywords

Comments

Absolute value of the imaginary part of any of the nontrivial divisors of 2 in O_Q(sqrt(-7)).
The incircle of a triangle with sides of lengths 4, 5, 6 units respectively has a radius of sqrt(7)/2.
With a different offset, decimal expansion of 5 * sqrt(7).
From Wolfdieter Lang, Nov 18 2017: (Start)
In a regular hexagon inscribed in a circle with a radius of 1 unit the three distinct distances between any vertex and the middle of the sides are 1/2, sqrt(7)/2 and sqrt(13)/2.
The continued fraction expansion of sqrt(7)/2 is 1, repeat(3, 10, 3, 2). The convergents are given in A294972/A294973. (End)

Examples

			1.32287565553229529525...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[7]/2, 10, 100][[1]]
  • PARI
    { default(realprecision, 20080); x=sqrt(7)/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b242703.txt", n, " ", d)); } \\ Iain Fox, Nov 18 2017

Formula

(1/2 - sqrt(-7)/2)(1/2 + sqrt(-7)/2) = 2.
Equals A010465/2. - R. J. Mathar, Feb 23 2021

A119032 a(n+2) = 18*a(n+1) - a(n) + 8.

Original entry on oeis.org

0, 9, 170, 3059, 54900, 985149, 17677790, 317215079, 5692193640, 102142270449, 1832868674450, 32889493869659, 590178020979420, 10590314883759909, 190035489886698950, 3410048503076821199, 61190837565496082640, 1098025027675852666329, 19703259660599851911290
Offset: 1

Views

Author

Richard Choulet, Aug 30 2007, Oct 09 2007

Keywords

Comments

Arises in calculating A107075. A053606 follows the same recurrence.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{19, -19, 1}, {0, 9, 170}, 20] (* Amiram Eldar, Dec 02 2024 *)

Formula

a(n+1) = 9*a(n+1) + 4 + (80*a(n)^2+80*a(n)+25)^(1/2).
G.f.: (9*x-x^2)/((1-x)*(1-18*x+x^2)).
a(n) = ((sqrt(5)+2)/8)*(9+4*sqrt(5))^(n-1) + ((-sqrt(5)+2)/8)*(9-4*sqrt(5))^(n-1) - 1/2. - Richard Choulet, Nov 26 2008
a(n) = (Lucas(6*n-3)-4)/8, where Lucas(n) = A000032(n). - Gary Detlefs, Dec 07 2010
Product_{n>=2} (1 + 1/a(n)) = sqrt(5)/2 (= 10 * A020837). - Amiram Eldar, Dec 02 2024

A041143 Denominators of continued fraction convergents to sqrt(80).

Original entry on oeis.org

1, 1, 17, 18, 305, 323, 5473, 5796, 98209, 104005, 1762289, 1866294, 31622993, 33489287, 567451585, 600940872, 10182505537, 10783446409, 182717648081, 193501094490, 3278735159921, 3472236254411, 58834515230497, 62306751484908, 1055742538989025
Offset: 0

Views

Author

Keywords

Comments

This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 16 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014

Crossrefs

Programs

  • GAP
    List([0..30], n-> (5 +3*(-1)^n)*Fibonacci(3*(n+1))/16 ); # G. C. Greubel, Jul 02 2019
    
  • Magma
    I:=[1,1,17,18]; [n le 4 select I[n] else 18*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
    
  • Maple
    with(numtheory): cf := cfrac(sqrt(80),25): seq(nthdenom(cf,n), n=0..24); # Peter Luschny, Jul 06 2019
  • Mathematica
    Denominator/@Convergents[Sqrt[80], 30] (* Vladimir Joseph Stephan Orlovsky, Jul 05 2011 *)
    CoefficientList[Series[(1 + x - x^2)/(1 - 18 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,18,0]^n*[1;1;17;18])[1,1] \\ Charles R Greathouse IV, Nov 13 2015
    
  • PARI
    a(n) = (5 + 3*(-1)^n)*fibonacci(3*(n+1))/16 \\ Georg Fischer, Jul 01 2019
    
  • Python
    from sympy import continued_fraction_convergents as convergents, continued_fraction_iterator as cf, sqrt, denom
    denominators = (denom(c) for c in convergents(cf(sqrt(80))))
    print([next(denominators) for  in range(30)]) # _Ehren Metcalfe, Jul 03 2019
  • Sage
    [(5 +3*(-1)^n)*fibonacci(3*(n+1))/16 for n in (0..30)] # G. C. Greubel, Jul 02 2019
    

Formula

G.f.: (1 + x - x^2) / (1 - 18*x^2 + x^4).
a(n) = 18*a(n-2) - a(n-4).
From Peter Bala, May 28 2014: (Start)
Let alpha = 2 + sqrt(5) and beta = 2 - sqrt(5) be the roots of the equation x^2 - 4*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n even, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n odd.
a(n) = A001076(n+1) for n even; a(n) = 1/4*A001076(n+1) for n odd.
a(n) = Product_{k = 1..floor(n/2)} ( 16 + 4*cos^2(k*Pi/(n+1)) ).
Recurrence equations: a(0) = 1, a(1) = 1 and for n >= 1, a(2*n) = 16*a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = a(2*n) + a(2*n - 1). (End)
a(n) = (5 + 3*(-1)^n)*Fibonacci(3*(n+1))/16. - Ehren Metcalfe, Apr 15 2019

Extensions

First term 0 removed from b-file, formulas and programs by Georg Fischer, Jul 01 2019

A138373 Count of post-period decimal digits up to which the rounded n-th convergent to sqrt(5)/2 agrees with the exact value.

Original entry on oeis.org

1, 3, 3, 5, 6, 8, 9, 10, 9, 13, 13, 15, 15, 18, 19, 20, 22, 22, 24, 25, 26, 27, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 43, 44, 45, 47, 47, 49, 50, 52, 53, 54, 55, 56, 58, 57, 60, 61, 62, 64, 64, 67, 68, 68, 71, 72, 73, 74, 75, 76, 78, 78, 80, 82, 83, 84, 85, 86, 88, 88, 90
Offset: 1

Views

Author

Artur Jasinski, Mar 17 2008

Keywords

Comments

Defined equivalent to A138367 considering the constant 1.1188.. = 10*A020837 and its convergents 9/8 (n=1), 19/17 (n=2), 161/144 (n=3), 341/305 (n=4), 2889/2584 (n=5).

Crossrefs

Extensions

Definition and values replaced as defined via continued fractions - R. J. Mathar, Oct 01 2009

A352484 Decimal expansion of the probability that when three real numbers are chosen at random, uniformly and independently in the interval [0,1], they can be the lengths of the sides of a triangle whose altitudes are also the sides of some triangle.

Original entry on oeis.org

3, 0, 5, 8, 3, 6, 7, 2, 2, 2, 5, 0, 7, 8, 8, 8, 7, 5, 6, 3, 4, 3, 5, 9, 5, 8, 1, 7, 0, 1, 9, 7, 8, 1, 7, 2, 1, 6, 0, 3, 2, 2, 4, 2, 0, 1, 4, 3, 4, 2, 6, 6, 0, 6, 7, 8, 3, 8, 7, 5, 0, 5, 8, 6, 0, 1, 1, 9, 9, 0, 4, 5, 9, 0, 4, 0, 4, 3, 4, 3, 2, 6, 8, 0, 5, 0, 0, 5, 9, 1, 5, 5, 7, 9, 9, 9, 2, 8, 7, 6, 0, 4, 7, 8, 5
Offset: 0

Views

Author

Amiram Eldar, Mar 18 2022

Keywords

Comments

Without the condition on the altitudes the probability is 1/2.

Examples

			0.30583672225078887563435958170197817216032242014342...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2*Log[Sqrt[5] - 1] + 1 - Sqrt[5]/2, 10, 100][[1]]
  • PARI
    2*log(sqrt(5)-1) + 1 - sqrt(5)/2 \\ Charles R Greathouse IV, Nov 26 2024

Formula

Equals 2*log(sqrt(5)-1) + 1 - sqrt(5)/2.
Showing 1-10 of 10 results.