cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A020857 Decimal expansion of log_2(3).

Original entry on oeis.org

1, 5, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1

Views

Author

Keywords

Comments

The fractional part of the binary logarithm of 3 * 2^n (A007283) is the same as that of any number of the form log_2 (A007283(n)) (e.g., log_2(192) = 7.5849625...). Furthermore, a necessary but not sufficient condition for a number to be Fibbinary (A003714) is that the fractional part of its binary logarithm does not exceed that of this number. - Alonso del Arte, Jun 22 2012
Log_2(3)-1 = 0.58496... is the exponent in n^(log_2(3)-1), the asymptotic growth rate of the number of odd coefficients in (1+x)^n mod 2 (Cf. Steven Finch ref.). - Jean-François Alcover, Aug 13 2014
Equals the Hausdorff dimension of the Sierpiński triangle. - Stanislav Sykora, May 27 2015
The complexity of Karatsuba algorithm for the multiplication of two n-digit numbers is O(n^log_2(3)). - Jianing Song, Apr 28 2019

Examples

			log_2(3) = 1.5849625007211561814537389439...
		

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 257.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.16, p. 145.

Crossrefs

Cf. decimal expansion of log_2(m): this sequence, A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Cf. A102525.

Programs

Formula

Equals 1 / A102525. - Bernard Schott, Feb 02 2023

Extensions

Comment generalized by J. Lowell, Apr 26 2014

A020862 Decimal expansion of log_2(10).

Original entry on oeis.org

3, 3, 2, 1, 9, 2, 8, 0, 9, 4, 8, 8, 7, 3, 6, 2, 3, 4, 7, 8, 7, 0, 3, 1, 9, 4, 2, 9, 4, 8, 9, 3, 9, 0, 1, 7, 5, 8, 6, 4, 8, 3, 1, 3, 9, 3, 0, 2, 4, 5, 8, 0, 6, 1, 2, 0, 5, 4, 7, 5, 6, 3, 9, 5, 8, 1, 5, 9, 3, 4, 7, 7, 6, 6, 0, 8, 6, 2, 5, 2, 1, 5, 8, 5, 0, 1, 3, 9, 7, 4, 3, 3, 5, 9, 3, 7, 0, 1, 5
Offset: 1

Views

Author

Keywords

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 55.

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), this sequence, A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).

Programs

Formula

Equals 1+A020858. - R. J. Mathar, Oct 25 2008

Extensions

Definition improved by J. Lowell, May 03 2014

A020858 Decimal expansion of log_2(5).

Original entry on oeis.org

2, 3, 2, 1, 9, 2, 8, 0, 9, 4, 8, 8, 7, 3, 6, 2, 3, 4, 7, 8, 7, 0, 3, 1, 9, 4, 2, 9, 4, 8, 9, 3, 9, 0, 1, 7, 5, 8, 6, 4, 8, 3, 1, 3, 9, 3, 0, 2, 4, 5, 8, 0, 6, 1, 2, 0, 5, 4, 7, 5, 6, 3, 9, 5, 8, 1, 5, 9, 3, 4, 7, 7, 6, 6, 0, 8, 6, 2, 5, 2, 1, 5, 8, 5, 0, 1, 3, 9, 7, 4, 3, 3, 5, 9, 3, 7, 0, 1, 5
Offset: 1

Views

Author

Keywords

Comments

Equals the Hausdorff dimension of the Sierpinski fractal square-based pyramid, when each square-based pyramid is replaced by 5 half-size such square-based pyramids (see IREM link). - Bernard Schott, Nov 30 2022

Examples

			2.3219280...
		

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), this sequence, A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Sierpinski pyramid: A000351 (number of pyramids), A279511 (number of vertices).

Programs

Extensions

Definition improved by J. Lowell, May 03 2014

A155921 Decimal expansion of log_2(24) = 3+log_2(3).

Original entry on oeis.org

4, 5, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Comments

This is the third term in the sequence of real numbers discussed in A229168-A229170. - N. J. A. Sloane, Sep 28 2013

Examples

			4.5849625007211561814537389439478165087598144076924810604557...
		

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), this sequence.
Cf. A229177.

Programs

  • Mathematica
    RealDigits[Log[2,24],10,120][[1]] (* Harvey P. Dale, Dec 07 2011 *)

Formula

Equals 1 + A020864 = 2 + A020859 = 3 + A020857. - Jianing Song, Nov 16 2024

A154847 Decimal expansion of log_2 (17).

Original entry on oeis.org

4, 0, 8, 7, 4, 6, 2, 8, 4, 1, 2, 5, 0, 3, 3, 9, 4, 0, 8, 2, 5, 4, 0, 6, 6, 0, 1, 0, 8, 1, 0, 4, 0, 4, 3, 5, 4, 0, 1, 1, 2, 6, 7, 2, 8, 2, 3, 4, 4, 8, 2, 0, 6, 8, 8, 1, 2, 6, 6, 0, 9, 0, 6, 4, 3, 8, 6, 6, 9, 6, 5, 0, 9, 0, 4, 7, 3, 8, 2, 0, 6, 8, 2, 9, 7, 3, 4, 3, 1, 5, 1, 8, 4, 3, 6, 8, 4, 2, 7
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			4.0874628412503394082540660108104043540112672823448206881266...
		

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), this sequence, A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).

Programs

  • Mathematica
    RealDigits[Log[2, 17], 10, 100][[1]] (* Vincenzo Librandi, Aug 29 2013 *)

A155172 Decimal expansion of log_2 (20).

Original entry on oeis.org

4, 3, 2, 1, 9, 2, 8, 0, 9, 4, 8, 8, 7, 3, 6, 2, 3, 4, 7, 8, 7, 0, 3, 1, 9, 4, 2, 9, 4, 8, 9, 3, 9, 0, 1, 7, 5, 8, 6, 4, 8, 3, 1, 3, 9, 3, 0, 2, 4, 5, 8, 0, 6, 1, 2, 0, 5, 4, 7, 5, 6, 3, 9, 5, 8, 1, 5, 9, 3, 4, 7, 7, 6, 6, 0, 8, 6, 2, 5, 2, 1, 5, 8, 5, 0, 1, 3, 9, 7, 4, 3, 3, 5, 9, 3, 7, 0, 1, 5
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Comments

Equals 2 + A020858 = 1 + A020862 = A016643 / A002162. - Michel Marcus, Jul 28 2013

Examples

			4.3219280948873623478703194294893901758648313930245806120547...
		

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), this sequence, A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).

Programs

  • Mathematica
    RealDigits[Log[2, 20], 10, 100][[1]] (* Vincenzo Librandi, Aug 29 2013 *)

A020863 Decimal expansion of log_2(11).

Original entry on oeis.org

3, 4, 5, 9, 4, 3, 1, 6, 1, 8, 6, 3, 7, 2, 9, 7, 2, 5, 6, 1, 9, 9, 3, 6, 3, 0, 4, 6, 7, 2, 5, 7, 9, 2, 9, 5, 8, 7, 0, 3, 2, 3, 1, 5, 2, 5, 6, 8, 1, 7, 6, 8, 0, 7, 1, 3, 1, 2, 8, 0, 1, 6, 4, 5, 7, 2, 6, 3, 3, 0, 6, 1, 9, 7, 2, 0, 0, 1, 8, 3, 5, 2, 7, 0, 9, 4, 9, 1, 2, 9, 9, 2, 8, 6, 9, 0, 0, 4, 8
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), this sequence, A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).

Programs

Extensions

Definition improved by J. Lowell, May 03 2014

A020864 Decimal expansion of log(12)/log(2).

Original entry on oeis.org

3, 5, 8, 4, 9, 6, 2, 5, 0, 0, 7, 2, 1, 1, 5, 6, 1, 8, 1, 4, 5, 3, 7, 3, 8, 9, 4, 3, 9, 4, 7, 8, 1, 6, 5, 0, 8, 7, 5, 9, 8, 1, 4, 4, 0, 7, 6, 9, 2, 4, 8, 1, 0, 6, 0, 4, 5, 5, 7, 5, 2, 6, 5, 4, 5, 4, 1, 0, 9, 8, 2, 2, 7, 7, 9, 4, 3, 5, 8, 5, 6, 2, 5, 2, 2, 2, 8, 0, 4, 7, 4, 9, 1, 8, 0, 8, 8, 2, 4
Offset: 1

Views

Author

Keywords

Examples

			3.58496250072115618145373894394781650875981440.....
		

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), this sequence, A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).

Programs

Formula

Equals 1 + A020859. - R. J. Mathar, Oct 25 2008
Equals 2 + A020857 = -1 + A155921. - Jianing Song, Nov 16 2024

A152590 Decimal expansion of log_2(13).

Original entry on oeis.org

3, 7, 0, 0, 4, 3, 9, 7, 1, 8, 1, 4, 1, 0, 9, 2, 1, 6, 0, 3, 9, 6, 8, 1, 2, 6, 5, 4, 2, 5, 6, 6, 9, 4, 7, 3, 3, 6, 2, 8, 4, 3, 6, 4, 0, 1, 7, 9, 1, 0, 3, 7, 3, 6, 9, 5, 3, 8, 4, 6, 3, 5, 2, 5, 8, 4, 2, 8, 5, 5, 1, 8, 6, 6, 3, 3, 0, 2, 5, 3, 0, 0, 1, 4, 7, 3, 7, 6, 5, 3, 0, 2, 8, 1, 1, 5, 4, 8, 9
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2009

Keywords

Examples

			3.7004397181410921603968126542566947336284364017910373695384...
		

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), this sequence, A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).

Programs

A154462 Decimal expansion of log_2 (14).

Original entry on oeis.org

3, 8, 0, 7, 3, 5, 4, 9, 2, 2, 0, 5, 7, 6, 0, 4, 1, 0, 7, 4, 4, 1, 9, 6, 9, 3, 1, 7, 2, 3, 1, 8, 3, 0, 8, 0, 8, 6, 4, 1, 0, 2, 6, 6, 2, 5, 9, 6, 6, 1, 4, 0, 7, 8, 3, 6, 7, 7, 2, 9, 1, 7, 2, 4, 0, 7, 0, 3, 2, 0, 8, 4, 8, 8, 6, 2, 1, 9, 2, 9, 8, 6, 4, 9, 7, 8, 6, 0, 9, 9, 9, 1, 7, 0, 2, 1, 0, 7, 8
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			3.8073549220576041074419693172318308086410266259661407836772...
		

Crossrefs

Cf. decimal expansion of log_2(m): A020857 (m=3), A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), this sequence, A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).

Programs

  • Mathematica
    RealDigits[Log[2,14],10,120][[1]] (* Harvey P. Dale, Jul 19 2013 *)

Formula

Equals 1+A020860. - R. J. Mathar, Feb 01 2023
Showing 1-10 of 16 results. Next