cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020992 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 0, a(1) = 2, a(2) = 1.

Original entry on oeis.org

0, 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, 8400, 15450, 28417, 52267, 96134, 176818, 325219, 598171, 1100208, 2023598, 3721977, 6845783, 12591358, 23159118, 42596259, 78346735, 144102112, 265045106, 487493953, 896641171, 1649180230
Offset: 0

Views

Author

Keywords

Comments

Tribonacci sequence beginning 0, 2, 1.
Pisano period lengths: 1, 4, 13, 8, 31, 52, 48, 16, 39, 124, 110, 104, 168, 48, 403, 32, 96, 156, 360, 248,.... - R. J. Mathar, Aug 10 2012
One bisection is 0, 1, 6, 19, 64, 217, 734, 2483, 8400,.. and the other 2, 3, 10, 35, 118, 399, 1350, 4567,... both with recurrence b(n)=3*b(n-1)+b(n-2)+b(n-3). - R. J. Mathar, Aug 10 2012
From Greg Dresden and Jiarui Zhou, Jun 30 2025: (Start)
For n >= 4, 2*a(n) is the number of ways to tile this shape of length n-2 with squares, dominos, and trominos (of length 3):
._
|||___________
|||_|||_|||
|_|.
As an example, here is one of the 2*a(10) = 434 ways to tile this shape of length 8:
._
| |_|_____|||
|_| (End)

Crossrefs

Programs

  • Magma
    I:=[0,2,1]; [n le 3 select I[n] else Self(n-1) + Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 09 2018
  • Mathematica
    LinearRecurrence[{1,1,1},{0,2,1},100] (* Vladimir Joseph Stephan Orlovsky, Jun 07 2011 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(2-x)/(1-x-x^2-x^3))) \\ G. C. Greubel, Feb 09 2018
    

Formula

G.f.: x*(2-x)/(1-x-x^2-x^3).
a(n) = 2*A000073(n+1)-A000073(n). - R. J. Mathar, Aug 22 2008
a(n) = 2*a(n-1) - a(n-4), n>3. - Vincenzo Librandi, Jun 08 2011