A020992 a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 0, a(1) = 2, a(2) = 1.
0, 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, 8400, 15450, 28417, 52267, 96134, 176818, 325219, 598171, 1100208, 2023598, 3721977, 6845783, 12591358, 23159118, 42596259, 78346735, 144102112, 265045106, 487493953, 896641171, 1649180230
Offset: 0
Links
- Robert Price, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, and RafaĆ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1).
Programs
-
Magma
I:=[0,2,1]; [n le 3 select I[n] else Self(n-1) + Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 09 2018
-
Mathematica
LinearRecurrence[{1,1,1},{0,2,1},100] (* Vladimir Joseph Stephan Orlovsky, Jun 07 2011 *)
-
PARI
my(x='x+O('x^30)); concat([0], Vec(x*(2-x)/(1-x-x^2-x^3))) \\ G. C. Greubel, Feb 09 2018
Formula
G.f.: x*(2-x)/(1-x-x^2-x^3).
a(n) = 2*a(n-1) - a(n-4), n>3. - Vincenzo Librandi, Jun 08 2011
Comments