cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 51 results. Next

A232498 Primes in the tribonacci-like sequence, A020992.

Original entry on oeis.org

2, 3, 19, 4567, 52267, 325219, 2967036956187340614662532876709507060271690954641131383
Offset: 1

Views

Author

Robert Price, Dec 12 2013

Keywords

Crossrefs

Programs

  • Mathematica
    a={0,2,1}; Print[2] For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

A233554 Indices of primes in the tribonacci-like sequence, A020992.

Original entry on oeis.org

1, 3, 6, 15, 19, 22, 207, 542, 2374, 10579, 17726, 43182
Offset: 1

Views

Author

Robert Price, Dec 12 2013

Keywords

Comments

a(13) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,2,1};Print[1];For[n=3,n<=1000,n++,sum=Plus@@a;If[PrimeQ[sum],Print[n]];a=RotateLeft[a]; a[[3]]=sum]

A100683 a(n) = a(n-1) + a(n-2) + a(n-3); a(0) = -1, a(1) = 2, a(2) = 2.

Original entry on oeis.org

-1, 2, 2, 3, 7, 12, 22, 41, 75, 138, 254, 467, 859, 1580, 2906, 5345, 9831, 18082, 33258, 61171, 112511, 206940, 380622, 700073, 1287635, 2368330, 4356038, 8012003, 14736371, 27104412, 49852786, 91693569, 168650767, 310197122
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2004

Keywords

Comments

A tribonacci sequence.
From Greg Dresden and Veda Garigipati, Jun 14 2022: (Start)
For n >= 2, a(n+2) is the number of ways to tile this figure of length n with squares, dominoes, and "trominoes" (of length 3):
_
|||___________
|||_|||_|||
As an example, here is one of the 254 possible tilings of this figure of length 8 with squares, dominoes, and trominoes:
_
||____|_|_|_|. (End)

Crossrefs

Programs

  • Maple
    a[0]:=-1:a[1]:=2:a[2]:=2:for n from 3 to 42 do a[n]:=a[n-1]+a[n-2]+a[n-3] od: seq(a[n],n=0..42);
  • Mathematica
    a[0] = -1; a[1] = a[2] = 2; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; Table[ a[n], {n, 0, 35}] (* Robert G. Wilson v, Dec 09 2004 *)
    LinearRecurrence[{1,1,1},{-1,2,2},34] (* Ray Chandler, Dec 08 2013 *)
  • PARI
    Vec(-(1-3*x-x^2)/(1-x-x^2-x^3) + O(x^70)) \\ Michel Marcus, Sep 25 2015

Formula

a(n+1) = 2*A001590(n+1) + A020992(n). - Creighton Dement, May 02 2005
O.g.f.: -(1-3x-x^2)/(1-x-x^2-x^3). - R. J. Mathar, Aug 22 2008
a(n) = T(n-2) + T(n) + T(n+1) where T(n) = A000073(n) the tribonacci sequence, for n >= 2. - Greg Dresden and Veda Garigipati, Jun 14 2022

Extensions

More terms from Emeric Deutsch, Farideh Firoozbakht and Robert G. Wilson v, Dec 08 2004

A235862 Indices of primes in A141523.

Original entry on oeis.org

0, 3, 4, 5, 8, 10, 14, 16, 24, 30, 40, 54, 63, 66, 67, 109, 188, 203, 421, 463, 704, 730, 798, 1155, 1259, 1376, 1789, 2095, 2650, 3833, 4538, 4794, 4840, 5386, 8348, 15176, 17282, 21250, 21386, 21825, 31242, 32843, 33706, 37026, 47546, 66848
Offset: 1

Views

Author

Robert Price, Jan 16 2014

Keywords

Comments

a(47) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={3,1,1}; Print[0]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]

Extensions

Name clarified by Arthur O'Dwyer, Jul 25 2024

A081172 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3), with a(0) = 1, a(1) = 1, a(2) = 0.

Original entry on oeis.org

1, 1, 0, 2, 3, 5, 10, 18, 33, 61, 112, 206, 379, 697, 1282, 2358, 4337, 7977, 14672, 26986, 49635, 91293, 167914, 308842, 568049, 1044805, 1921696, 3534550, 6501051, 11957297, 21992898, 40451246, 74401441, 136845585, 251698272, 462945298, 851489155
Offset: 0

Views

Author

Harry J. Smith, Apr 19 2003

Keywords

Comments

The name "tribonacci number" is less well-defined than "Fibonacci number". The sequence A000073 (which begins 0, 0, 1) is probably the most important version, but the name has also been applied to A000213, A001590, and A081172. - N. J. A. Sloane, Jul 25 2024
Completes the set of tribonacci numbers starting with 0's and 1's in the first three terms:
0,0,0 A000004;
0,0,1 A000073;
0,1,0 A001590;
0,1,1 A000073 starting at a(1);
1,0,0 A000073 starting at a(-1);
1,0,1 A001590;
1,1,0 this sequence;
1,1,1 A000213.

Crossrefs

Programs

  • GAP
    a:=[1,1,0];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x^2)/(1-x-x^2-x^3) )); // G. C. Greubel, Apr 23 2019
    
  • Maple
    A081172 := proc(n)
        option remember;
        if n <= 2 then
            op(n+1,[1,1,0]) ;
        else
            add(procname(n-i),i=1..3) ;
        end if;
    end proc: # R. J. Mathar, Aug 09 2012
  • Mathematica
    LinearRecurrence[{1,1,1}, {1,1,0}, 40] (* Vladimir Joseph Stephan Orlovsky, Jun 07 2011 *)
  • PARI
    { a1=1; a2=1; a3=0; write("b081172.txt",0," ",a1); write("b081172.txt",1," ",a2); write("b081172.txt",2," ",a3); for(n=3,500, a=a1+a2+a3; a1=a2; a2=a3; a3=a; write("b081172.txt",n," ",a) ) } \\ Harry J. Smith, Mar 20 2009
    
  • PARI
    my(x='x+O('x^40)); Vec((1-2*x^2)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((1-2*x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

From R. J. Mathar, Mar 27 2009: (Start)
G.f.: (1-2*x^2)/(1 - x - x^2 - x^3).
a(n) = A000073(n+2) - 2*A000073(n). (End)

A136175 Tribonacci array, T(n,k).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 7, 11, 9, 8, 13, 20, 17, 15, 10, 24, 37, 31, 28, 19, 12, 44, 68, 57, 51, 35, 22, 14, 81, 125, 105, 94, 64, 41, 26, 16, 149, 230, 193, 173, 118, 75, 48, 30, 18, 274, 423, 355, 318, 217, 138, 88, 55, 33, 21, 504, 778, 653, 585, 399, 254, 162, 101, 61, 39, 23
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2007

Keywords

Comments

As an interspersion (and dispersion), the array is, as a sequence, a permutation of the positive integers. Column k consists of the numbers m such that the least summand in the tribonacci representation of m is T(1,k). For example, column 1 consists of numbers with least summand 1. This array arises from tribonacci representations in much the same way that the Wythoff array, A035513, arises from Fibonacci (or Zeckendorf) representations.
From Abel Amene, Jul 29 2012: (Start)
(Row 1) = A000073 (offset=4) a(0)=0, a(1)=0, a(2)=1
(Row 2) = A001590 (offset=5) a(0)=0, a(1)=1, a(2)=0
(Row 3) = A000213 (offset=4) a(0)=1, a(1)=1, a(2)=1
(Row 4) = A214899 (offset=5) a(0)=2, a(1)=1, a(2)=2
(Row 5) = A020992 (offset=6) a(0)=0, a(1)=2, a(2)=1
(Row 6) = A100683 (offset=6) a(0)=-1,a(1)=2, a(2)=2
(Row 7) = A135491 (offset=4) a(0)=2, a(1)=4, a(2)=8
(Row 8) = A214727 (offset=6) a(0)=1, a(1)=1, a(2)=2
(Row 9) = A081172 (offset=8) a(0)=1, a(1)=1, a(2)=0
(column 1) = A003265
(column 2) = A353083
(End) [Corrected and extended by John Keith, May 09 2022]

Examples

			Northwest corner:
1  2   4   7   13  24   44   81  149 274 504
3  6   11  20  37  68   125  230 423 778
5  9   17  31  57  105  193  355 653
8  15  28  51  94  173  318  585
10 19  35  64  118 217  399
12 22  41  75  138 254
14 26  48  88  162
16 30  55 101
18 33  61
21 39
23
		

Crossrefs

Programs

  • Maple
    # maximum index in A73 such that A73 <= n.
    A73floorIdx := proc(n)
        local k ;
        for k from 3 do
            if A000073(k) = n then
                return k ;
            elif A000073(k) > n then
                return k -1 ;
            end if ;
        end do:
    end proc:
    # tribonacci expansion coeffs of n
    A278038 := proc(n)
        local k,L,nres ;
        k := A73floorIdx(n) ;
        L := [1] ;
        nres := n-A000073(k) ;
        while k >= 4 do
            k := k-1 ;
            if nres >= A000073(k) then
                L := [1,op(L)] ;
                nres := nres-A000073(k) ;
            else
                L := [0,op(L)] ;
            end if ;
        end do:
        return L ;
    end proc:
    A278038inv := proc(L)
        add( A000073(i+2)*op(i,L),i=1..nops(L)) ;
    end proc:
    A135175 := proc(n,k)
        option remember ;
        local a,known,prev,nprev,kprev,freb ;
        if n =1 then
            A000073(k+2) ;
        elif k>3 then
            procname(n,k-1)+procname(n,k-2)+procname(n,k-3) ;
        else
            if k = 1 then
                for a from 1 do
                    known := false ;
                    for nprev from 1 to n-1 do
                        for kprev from 1 do
                            if procname(nprev,kprev) > a then
                                break ;
                            elif procname(nprev,kprev) = a then
                                known := true ;
                            end if;
                        end do:
                    end do:
                    if not known then
                        return a ;
                    end if;
                end do:
            else
                prev := procname(n,k-1) ;
                freb := A278038(prev) ;
                return A278038inv([0,op(freb)]) ;
            end if;
        end if;
    end proc:
    seq(seq(A135175(n,d-n),n=1..d-1),d=2..12) ; # R. J. Mathar, Jun 07 2022

Formula

T(1,1)=1, T(1,2)=2, T(1,3)=4, T(1,k)=T(1,k-1)+T(1,k-2)+T(1,k-3) for k>3. Row 1 is the tribonacci basis; write B(k)=T(1,k). Each row satisfies the recurrence T(n,k)=T(n,k-1)+T(n,k-2)+T(n,k-3). T(n,1) is least number not in an earlier row. If T(n,1) has tribonacci representation B(k(1))+B(k(2))+...+B(k(m)), then T(n,2) = B(k(2))+B(k(3))+...+B(k(m+1)) and T(n,3) = B(k(3))+B(k(4))+...+B(k(m+2)). (Continued shifting of indices gives the other terms in row n, also.)

Extensions

T(3, 4) corrected and more terms by John Keith, May 09 2022

A234696 Indices of primes in the tribonacci-like sequence, A214727.

Original entry on oeis.org

1, 2, 3, 8, 16, 20, 64, 208, 364, 2652, 7763, 17280, 24104, 31823, 70864, 74008
Offset: 1

Views

Author

Robert Price, Dec 29 2013

Keywords

Comments

a(17) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={1, 2, 2}; Print[2]; Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[3]]=sum]
    Position[LinearRecurrence[{1,1,1},{1,2,2},75000],?PrimeQ]-1//Flatten (* _Harvey P. Dale, Sep 02 2016 *)

A235873 Primes in the tribonacci-like sequence, A141523.

Original entry on oeis.org

3, 5, 7, 13, 83, 281, 3217, 10883, 1425427, 55187617, 24453221203, 124001884480009, 29872617402415741, 185875267730565697, 341877918058715653, 44580781450601596678810171573, 36012536557658790037420884825332617431175065740791
Offset: 1

Views

Author

Robert Price, Jan 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    a={3,1,1}; Print[3]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]

A249413 Primes in the hexanacci numbers sequence A000383.

Original entry on oeis.org

11, 41, 72426721, 143664401, 565262081, 4160105226881, 253399862985121, 997027328131841, 212479323351825962211841, 188939838859312612896128881921, 22828424707602602744356458636161, 661045104283639247572028952777478721
Offset: 1

Views

Author

Robert Price, Dec 03 2014

Keywords

Comments

a(13) is too large to display here. It has 62 digits and is the 210th term in A000383.

Crossrefs

Programs

  • Mathematica
    a={1,1,1,1,1,1}; For[n=6, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]

A247027 Indices of primes in the tetranacci sequence A001631.

Original entry on oeis.org

5, 7, 12, 19, 47, 97, 124, 244, 564, 1037, 12007, 13662, 180039
Offset: 1

Views

Author

Robert Price, Sep 09 2014

Keywords

Comments

a(14) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a={0,0,1,0}; For[n=4, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[n]]; a=RotateLeft[a]; a[[4]]=sum]
Showing 1-10 of 51 results. Next