cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A183603 T(n,k)=1/6 the number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock containing all three values.

Original entry on oeis.org

6, 27, 27, 120, 204, 120, 534, 1479, 1479, 534, 2376, 10797, 17174, 10797, 2376, 10572, 78729, 201770, 201770, 78729, 10572, 47040, 574185, 2366412, 3831324, 2366412, 574185, 47040, 209304, 4187499, 27768032, 72592860, 72592860, 27768032, 4187499
Offset: 1

Views

Author

R. H. Hardin Jan 05 2011

Keywords

Comments

Table starts
.......6.........27..........120.............534..............2376
......27........204.........1479...........10797.............78729
.....120.......1479........17174..........201770...........2366412
.....534......10797.......201770.........3831324..........72592860
....2376......78729......2366412........72592860........2220901926
...10572.....574185.....27768032......1376627608.......68026656422
...47040....4187499....325834456.....26108240340.....2083981368760
..209304...30539367...3823553752....495215814566....63854542807704
..931296..222722937..44868561272...9393691937690..1956721189681174
.4143792.1624313781.526526214848.178194216929170.59964037003007332

Examples

			Some solutions with a(1,1)=0 for 4X3
..0..1..0....0..0..1....0..2..0....0..1..1....0..1..0....0..1..0....0..0..0
..2..2..0....1..2..1....0..1..0....2..0..2....2..2..1....1..2..1....1..2..1
..1..0..1....2..0..2....1..2..0....1..1..2....1..0..2....0..2..0....1..0..0
..2..2..1....1..1..0....0..2..1....2..0..1....2..2..1....2..1..1....0..2..1
		

Crossrefs

Column 1 is 3*A021001(n-1)

A107979 a(n) = 4*a(n-1) + 2*a(n-2) for n>1, with a(0)=2, a(1)=9.

Original entry on oeis.org

2, 9, 40, 178, 792, 3524, 15680, 69768, 310432, 1381264, 6145920, 27346208, 121676672, 541399104, 2408949760, 10718597248, 47692288512, 212206348544, 944209971200, 4201252581888, 18693430269952, 83176226243584
Offset: 0

Views

Author

Emeric Deutsch, Jun 12 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.
This is the case r=2 of the generalized Pell numbers as defined in Bród. - Michel Marcus, Oct 28 2020

Examples

			G.f. = 2 + 9*x + 40*x^2 + 178*x^3 + 792*x^4 + 3524*x^5 + 15680*x^6 + 69768*x^7 + ...
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 78).

Crossrefs

Cf. A021001. - R. J. Mathar, Aug 24 2008

Programs

  • Maple
    a[0]:=2: a[1]:=9: for n from 2 to 26 do a[n]:=4*a[n-1]+2*a[n-2] od: seq(a[n],n=0..26);
  • Mathematica
    LinearRecurrence[{4,2},{2,9},30] (* or *) CoefficientList[Series[(-x-2)/(2x^2+4x-1),{x,0,30}],x] (* Harvey P. Dale, Jun 21 2011 *)
    a[ n_] := With[{m = n + 2}, If[ m < 0, -(-2)^m, 1] SeriesCoefficient[ x / (2 - 8 x - 4 x^2), {x, 0, Abs@m}]]; (* Michael Somos, May 23 2014 *)
    a[ n_] := With[{m = n + 2, r = Sqrt[6]}, If[ m < 0, -(-2)^m, Sign@m] Expand[(2 + r)^(Abs@m) / (2 r)][[1]]]; (* Michael Somos, May 23 2014 *)
  • PARI
    {a(n) = my(m = n+2); if( m<0, -(-2)^m, 1) * polcoeff( x / (2 - 8*x - 4*x^2) + x * O(x^abs(m)), abs(m))}; /* Michael Somos, May 23 2014 */
    
  • PARI
    {a(n) = my(r = 2 + quadgen(24)); imag( (1 + 2*r) * r^n)}; /* Michael Somos, May 23 2014 */
    
  • PARI
    a(n)=([0,1; 2,4]^n*[2;9])[1,1] \\ Charles R Greathouse IV, Feb 07 2017

Formula

From R. J. Mathar, Aug 24 2008: (Start)
O.g.f.: (2+x)/(1-4x-2x^2).
a(n) = 2*A090017(n) + A090017(n-1). (End)
a(n) = 1/12*((sqrt(6)-3)(-(2-sqrt(6))^n) + (3+sqrt(6))(2+sqrt(6))^n). - Harvey P. Dale, Jun 21 2011
a(n) = A000129(n+2) + Sum_{k=1..n} A000129(k+1)*a(n-k). - Ralf Stephan, May 23 2014

A268409 a(n) = 4*a(n - 1) + 2*a(n - 2) for n>1, a(0)=3, a(1)=5.

Original entry on oeis.org

3, 5, 26, 114, 508, 2260, 10056, 44744, 199088, 885840, 3941536, 17537824, 78034368, 347213120, 1544921216, 6874111104, 30586286848, 136093369600, 605546052096, 2694370947584, 11988575894528, 53343045473280, 237349333682176, 1056083425675264
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2016

Keywords

Comments

In general, the ordinary generating function for the recurrence relation b(n) = r*b(n - 1) + s*b(n - 2), with n>1 and b(0)=k, b(1)=m, is (k - (k*r - m)*x)/(1 - r*x - s*x^2). This recurrence gives the closed form b(n) = (2^(-n - 1)*((k*r - 2*m)*(r - sqrt(r^2 + 4*s))^n + (2*m - k*r)*(sqrt(r^2 + 4*s) + r)^n + k*sqrt(r^2 + 4*s)*(r - sqrt(r^2 + 4*s))^n + k*sqrt(r^2 + 4*s)*(sqrt(r^2 + 4*s) + r)^n))/sqrt(r^2 + 4*s).

Crossrefs

Programs

  • Magma
    [n le 2 select 2*n+1 else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 04 2016
    
  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == 5, a[n] == 4 a[n - 1] + 2 a[n - 2]}, a, {n, 23}]
    LinearRecurrence[{4, 2}, {3, 5}, 24]
    Table[((18 + Sqrt[6]) (2 - Sqrt[6])^n - (Sqrt[6] - 18) (2 + Sqrt[6])^n)/12, {n, 0, 23}]
  • PARI
    Vec((3 - 7*x)/(1 - 4*x - 2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016

Formula

G.f.: (3 - 7*x)/(1 - 4*x - 2*x^2).
a(n) = ((18 + sqrt(6))*(2 - sqrt(6))^n - (sqrt(6) - 18)*(2 + sqrt(6))^n)/12.
Lim_{n -> infinity} a(n + 1)/a(n) = 2 + sqrt(6) = A176213.
a(n) = 3*A090017(n+1) -7*A090017(n). - R. J. Mathar, Mar 12 2017
Showing 1-3 of 3 results.