A183603
T(n,k)=1/6 the number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock containing all three values.
Original entry on oeis.org
6, 27, 27, 120, 204, 120, 534, 1479, 1479, 534, 2376, 10797, 17174, 10797, 2376, 10572, 78729, 201770, 201770, 78729, 10572, 47040, 574185, 2366412, 3831324, 2366412, 574185, 47040, 209304, 4187499, 27768032, 72592860, 72592860, 27768032, 4187499
Offset: 1
Some solutions with a(1,1)=0 for 4X3
..0..1..0....0..0..1....0..2..0....0..1..1....0..1..0....0..1..0....0..0..0
..2..2..0....1..2..1....0..1..0....2..0..2....2..2..1....1..2..1....1..2..1
..1..0..1....2..0..2....1..2..0....1..1..2....1..0..2....0..2..0....1..0..0
..2..2..1....1..1..0....0..2..1....2..0..1....2..2..1....2..1..1....0..2..1
A107979
a(n) = 4*a(n-1) + 2*a(n-2) for n>1, with a(0)=2, a(1)=9.
Original entry on oeis.org
2, 9, 40, 178, 792, 3524, 15680, 69768, 310432, 1381264, 6145920, 27346208, 121676672, 541399104, 2408949760, 10718597248, 47692288512, 212206348544, 944209971200, 4201252581888, 18693430269952, 83176226243584
Offset: 0
G.f. = 2 + 9*x + 40*x^2 + 178*x^3 + 792*x^4 + 3524*x^5 + 15680*x^6 + 69768*x^7 + ...
- S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 78).
-
a[0]:=2: a[1]:=9: for n from 2 to 26 do a[n]:=4*a[n-1]+2*a[n-2] od: seq(a[n],n=0..26);
-
LinearRecurrence[{4,2},{2,9},30] (* or *) CoefficientList[Series[(-x-2)/(2x^2+4x-1),{x,0,30}],x] (* Harvey P. Dale, Jun 21 2011 *)
a[ n_] := With[{m = n + 2}, If[ m < 0, -(-2)^m, 1] SeriesCoefficient[ x / (2 - 8 x - 4 x^2), {x, 0, Abs@m}]]; (* Michael Somos, May 23 2014 *)
a[ n_] := With[{m = n + 2, r = Sqrt[6]}, If[ m < 0, -(-2)^m, Sign@m] Expand[(2 + r)^(Abs@m) / (2 r)][[1]]]; (* Michael Somos, May 23 2014 *)
-
{a(n) = my(m = n+2); if( m<0, -(-2)^m, 1) * polcoeff( x / (2 - 8*x - 4*x^2) + x * O(x^abs(m)), abs(m))}; /* Michael Somos, May 23 2014 */
-
{a(n) = my(r = 2 + quadgen(24)); imag( (1 + 2*r) * r^n)}; /* Michael Somos, May 23 2014 */
-
a(n)=([0,1; 2,4]^n*[2;9])[1,1] \\ Charles R Greathouse IV, Feb 07 2017
A268409
a(n) = 4*a(n - 1) + 2*a(n - 2) for n>1, a(0)=3, a(1)=5.
Original entry on oeis.org
3, 5, 26, 114, 508, 2260, 10056, 44744, 199088, 885840, 3941536, 17537824, 78034368, 347213120, 1544921216, 6874111104, 30586286848, 136093369600, 605546052096, 2694370947584, 11988575894528, 53343045473280, 237349333682176, 1056083425675264
Offset: 0
-
[n le 2 select 2*n+1 else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 04 2016
-
RecurrenceTable[{a[0] == 3, a[1] == 5, a[n] == 4 a[n - 1] + 2 a[n - 2]}, a, {n, 23}]
LinearRecurrence[{4, 2}, {3, 5}, 24]
Table[((18 + Sqrt[6]) (2 - Sqrt[6])^n - (Sqrt[6] - 18) (2 + Sqrt[6])^n)/12, {n, 0, 23}]
-
Vec((3 - 7*x)/(1 - 4*x - 2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
Showing 1-3 of 3 results.
Comments