A022003 Decimal expansion of 1/999.
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 0
Examples
0.001001001001001001001...
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 1).
Programs
-
Mathematica
Join[{0,0},RealDigits[1/999,10,120][[1]]] (* or *) PadRight[{},120,{0,0,1}] (* Harvey P. Dale, May 24 2012 *)
-
PARI
a(n)=n%3==2 \\ Jaume Oliver Lafont, Mar 24 2009
Formula
From Mario Catalani (mario.catalani(AT)unito.it), Jan 07 2003: (Start)
G.f.: x^2/(1-x^3).
a(n) = -(1/2)*((-1)^floor((2n-1)/3) + (-1)^floor((2n+1)/3)). (End)
From Hieronymus Fischer, May 29 2007: (Start)
a(n) = ((n+2) mod 3) mod 2.
a(n) = (1/2)*(1 - (-1)^(n + floor((n+2)/3))). (End)
a(n) = (1 + (-1)^Fibonacci(n+1))/2. - Hieronymus Fischer, Jun 14 2007
a(n) = (n^5 - n^2) mod 3. - Gary Detlefs, Mar 20 2010
a(n) = ((-1)^(a(n-1) + a(n-2)) + 1)/2 starting from n=3. - Adriano Caroli, Nov 21 2010
a(n) = 1 - Fibonacci(n+1) mod 2. - Gary Detlefs, Dec 26 2010
a(n) = floor((n+1)/3) - floor(n/3). - Tani Akinari, Oct 22 2012
Comments