A022007 Initial members of prime 5-tuples (p, p+4, p+6, p+10, p+12).
7, 97, 1867, 3457, 5647, 15727, 16057, 19417, 43777, 79687, 88807, 101107, 257857, 266677, 276037, 284737, 340927, 354247, 375247, 402757, 419047, 427237, 463447, 470077, 626617, 666427, 736357, 823717, 855727, 959467, 978067, 1022377, 1043587, 1068247
Offset: 1
Examples
Admissibility guaranteeing sequence [1, 2, 3, 1, 2, repeat(1)] examples: the only residue class modulo prime(3) = 5 which contains none of the 5-tuple (0, 4, 6, 10, 12) members is 3 (mod 5). For prime(5) = 11 the first class is 2 (mod 11); the others are 3, 5, 7, 8, 9 (mod 11). - _Wolfdieter Lang_, Oct 06 2017
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- T. Forbes and Norman Luhn, Prime k-tuplets.
- Norman Luhn, Table of n, a(n) for n = 1..1000000.
- Eric Weisstein's World of Mathematics, Prime Constellation.
- Wikipedia, Prime k-tuple.
Programs
-
Magma
[p: p in PrimesUpTo(2*10^6) | IsPrime(p+4) and IsPrime(p+6) and IsPrime(p+10)and IsPrime(p+12)]; // Vincenzo Librandi, Aug 23 2015
-
Mathematica
Transpose[Select[Partition[Prime[Range[76000]], 5, 1], Differences[#] == {4, 2, 4, 2} &]][[1]] (* Harvey P. Dale, Aug 16 2014 *)
-
PARI
forprime(p=2,1e5,if(isprime(p+4)&&isprime(p+6)&&isprime(p+10)&&isprime(p+12),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
Perl
use ntheory ":all"; say for sieve_prime_cluster(1,1e7, 4,6,10,12); # Dana Jacobsen, Sep 30 2015
Formula
a(n) = 7 + 30*A089157(n). - Zak Seidov, Nov 01 2011
Comments