cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022013 Initial members of prime octuplets (p, p+6, p+8, p+14, p+18, p+20, p+24, p+26).

Original entry on oeis.org

88793, 284723, 855713, 1146773, 6560993, 69156533, 74266253, 218033723, 261672773, 302542763, 964669613, 1340301863, 1400533223, 1422475913, 1837160183, 1962038783, 2117861723, 2249363093, 2272018733, 2558211563
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 173 (modulo 210). - Matt C. Anderson, May 26 2015

Crossrefs

A065706 is the union of A022011, A022012 and A022013.
A346998(n) = a(10^n).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^8) | forall{p+r: r in [6,8,14,18,20,24,26] | IsPrime(p+r)}]; // Vincenzo Librandi, Sep 30 2015
    
  • Mathematica
    Select[Prime[Range[200000]], Union[PrimeQ[# + {6, 8, 14, 18, 20, 24, 26}]] == {True} &] (* Vincenzo Librandi, Sep 30 2015 *)
    Select[Prime[Range[125*10^6]],AllTrue[#+{6,8,14,18,20,24,26},PrimeQ]&] (* Harvey P. Dale, Jul 21 2025 *)
  • PARI
    forprime(p=2, 1e30, if (isprime(p+6) && isprime(p+8) && isprime(p+14) && isprime(p+18) && isprime(p+20) && isprime(p+24) && isprime(p+26) , print1(p", "))) \\ Altug Alkan, Sep 30 2015
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e10, 6,8,14,18,20,24,26); # Dana Jacobsen, Sep 30 2015
    

Formula

a(n) = 210*A357890(n) + 173. - Hugo Pfoertner, Nov 18 2022