cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022102 Fibonacci sequence beginning 1, 12.

Original entry on oeis.org

1, 12, 13, 25, 38, 63, 101, 164, 265, 429, 694, 1123, 1817, 2940, 4757, 7697, 12454, 20151, 32605, 52756, 85361, 138117, 223478, 361595, 585073, 946668, 1531741, 2478409, 4010150, 6488559, 10498709
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(12;n-1-k,k) with n>=1, a(-1)=11. These are the SW-NE diagonals in P(12;n,k), the (12,1) Pascal triangle. Cf. A093645 for the (10,1) Pascal triangle. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
In general, for b Fibonacci sequence beginning with 1, h, we have:
b(n) = (2^(-1-n)*((1 - sqrt(5))^n*(1 + sqrt(5) - 2*h) + (1 + sqrt(5))^n*(-1 + sqrt(5) + 2*h)))/sqrt(5). - Herbert Kociemba, Dec 18 2011
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (is this A001175?). - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    a0:=1; a1:=12; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
    
  • Mathematica
    LinearRecurrence[{1,1},{1,12},40] (* Harvey P. Dale, Jan 23 2012 *)
  • PARI
    a(n) = if(n==0, 1, if(n==1, 12, a(n-1)+a(n-2))) \\ Felix Fröhlich, Jun 09 2022
    
  • PARI
    Vec((1+11*x)/(1-x-x^2) + O(x^20)) \\ Felix Fröhlich, Jun 09 2022

Formula

a(n) = a(n-1) + a(n-2), n >= 2, a(0)=1, a(1)=12. a(-1):=11.
G.f.: (1+11*x)/(1-x-x^2).
a(n) = A109754(11, n+1) = A101220(11, 0, n+1).
a(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)) + (11/2)*((1+sqrt(5))^(n-1)-(1-sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). Offset 1. a(3)=13. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 11*A000045(n) + A000045(n+1). - R. J. Mathar, Aug 10 2012
a(n) = 13*A000045(n) - A000045(n-2). - Bruno Berselli, Feb 20 2017
a(n) = F(n+5) + F(n-1) - F(n-5) for F(n) the Fibonacci number A000045(n). - Greg Dresden and Aamen Muharram, Jun 09 2022