A022102 Fibonacci sequence beginning 1, 12.
1, 12, 13, 25, 38, 63, 101, 164, 265, 429, 694, 1123, 1817, 2940, 4757, 7697, 12454, 20151, 32605, 52756, 85361, 138117, 223478, 361595, 585073, 946668, 1531741, 2478409, 4010150, 6488559, 10498709
Offset: 0
Links
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1, 1).
Programs
-
Magma
a0:=1; a1:=12; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
-
Mathematica
LinearRecurrence[{1,1},{1,12},40] (* Harvey P. Dale, Jan 23 2012 *)
-
PARI
a(n) = if(n==0, 1, if(n==1, 12, a(n-1)+a(n-2))) \\ Felix Fröhlich, Jun 09 2022
-
PARI
Vec((1+11*x)/(1-x-x^2) + O(x^20)) \\ Felix Fröhlich, Jun 09 2022
Formula
a(n) = a(n-1) + a(n-2), n >= 2, a(0)=1, a(1)=12. a(-1):=11.
G.f.: (1+11*x)/(1-x-x^2).
a(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)) + (11/2)*((1+sqrt(5))^(n-1)-(1-sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). Offset 1. a(3)=13. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = F(n+5) + F(n-1) - F(n-5) for F(n) the Fibonacci number A000045(n). - Greg Dresden and Aamen Muharram, Jun 09 2022
Comments