cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022120 Fibonacci sequence beginning 3, 7.

Original entry on oeis.org

3, 7, 10, 17, 27, 44, 71, 115, 186, 301, 487, 788, 1275, 2063, 3338, 5401, 8739, 14140, 22879, 37019, 59898, 96917, 156815, 253732, 410547, 664279, 1074826, 1739105, 2813931, 4553036, 7366967, 11920003, 19286970, 31206973, 50493943, 81700916, 132194859
Offset: 0

Views

Author

Keywords

Comments

From Greg Dresden, Feb 18 2022: (Start)
a(n) is also the number of ways to tile this figure, with two cells on the top row and n+1 cells on the bottom row, using squares and dominoes. Shown here are the figures for a(0) through a(4):
._ ._ ._ ._ ._
||| ||| |||_ |||___ |||_____
|| ||_| |||_| |||_|| ||_|||_|
(End)

Crossrefs

Cf. A000032.

Programs

  • Mathematica
    Table[4*Fibonacci[n+2]-Fibonacci[n+1],{n,0,30}] (* Zak Seidov, Mar 15 2011 *)
    LinearRecurrence[{1,1},{3,7},50] (* Harvey P. Dale, May 28 2024 *)
  • PARI
    v=vector(100);v[1]=3;v[2]=7;for(i=3,#v,v[i]=v[i-2]+v[i-1]);v \\ Charles R Greathouse IV, Mar 15 2011

Formula

G.f.: (3+4x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = 4*Fibonacci(n+2) - Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = round(((15+11*sqrt(5))/10)*((1+sqrt(5))/2)^n + ((15-11*sqrt(5))/10)*((1-sqrt(5))/2)^n). - Bogart B. Strauss, Oct 27 2013
a(n) = Lucas(n+3) - Fibonacci(n-1). - Greg Dresden, Sam Neale, and Kyle Wood, Feb 18 2022
E.g.f.: exp(x/2)*(15*cosh(sqrt(5)*x/2) + 11*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jul 26 2022