A022120 Fibonacci sequence beginning 3, 7.
3, 7, 10, 17, 27, 44, 71, 115, 186, 301, 487, 788, 1275, 2063, 3338, 5401, 8739, 14140, 22879, 37019, 59898, 96917, 156815, 253732, 410547, 664279, 1074826, 1739105, 2813931, 4553036, 7366967, 11920003, 19286970, 31206973, 50493943, 81700916, 132194859
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..4782
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Cf. A000032.
Programs
-
Mathematica
Table[4*Fibonacci[n+2]-Fibonacci[n+1],{n,0,30}] (* Zak Seidov, Mar 15 2011 *) LinearRecurrence[{1,1},{3,7},50] (* Harvey P. Dale, May 28 2024 *)
-
PARI
v=vector(100);v[1]=3;v[2]=7;for(i=3,#v,v[i]=v[i-2]+v[i-1]);v \\ Charles R Greathouse IV, Mar 15 2011
Formula
G.f.: (3+4x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = 4*Fibonacci(n+2) - Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = round(((15+11*sqrt(5))/10)*((1+sqrt(5))/2)^n + ((15-11*sqrt(5))/10)*((1-sqrt(5))/2)^n). - Bogart B. Strauss, Oct 27 2013
a(n) = Lucas(n+3) - Fibonacci(n-1). - Greg Dresden, Sam Neale, and Kyle Wood, Feb 18 2022
E.g.f.: exp(x/2)*(15*cosh(sqrt(5)*x/2) + 11*sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jul 26 2022
Comments