cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022130 Fibonacci sequence beginning 4,9.

Original entry on oeis.org

4, 9, 13, 22, 35, 57, 92, 149, 241, 390, 631, 1021, 1652, 2673, 4325, 6998, 11323, 18321, 29644, 47965, 77609, 125574, 203183, 328757, 531940, 860697, 1392637, 2253334, 3645971, 5899305, 9545276, 15444581, 24989857, 40434438, 65424295, 105858733, 171283028
Offset: 0

Views

Author

Keywords

Comments

The associated Pisano series starts as in A001175, but differs for example for modulus 29 where it is 7, not 14. - R. J. Mathar, Nov 02 2011
The Pisano period also differs for modulus 58, where it is 21 instead of 42. Otherwise, the Pisano periods coincide with those of the Fibonacci numbers. - Klaus Purath, Jun 26 2022

Crossrefs

Programs

  • Magma
    a0:=4; a1:=9; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..35]]; // Vincenzo Librandi, Jan 25 2017
  • Maple
    a:= n-> (<<0|1>, <1|1>>^n.<<4, 9>>)[1,1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 22 2017
  • Mathematica
    a={};b=4;c=9;AppendTo[a,b];AppendTo[a,c];Do[b=b+c;AppendTo[a,b];c=b+c;AppendTo[a,c],{n,1,40,1}];a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)
    LinearRecurrence[{1,1},{4,9},40] (* Harvey P. Dale, Dec 15 2011 *)
  • PARI
    a(n)=4*fibonacci(n-1)+9*fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
    

Formula

a(n) = 4*Fibonacci(n+2) + Fibonacci(n).
G.f.: (4 + 5*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n)= Fibonacci(n-2) + Fibonacci(n+5). - Gary Detlefs, Mar 31 2012