A022130 Fibonacci sequence beginning 4,9.
4, 9, 13, 22, 35, 57, 92, 149, 241, 390, 631, 1021, 1652, 2673, 4325, 6998, 11323, 18321, 29644, 47965, 77609, 125574, 203183, 328757, 531940, 860697, 1392637, 2253334, 3645971, 5899305, 9545276, 15444581, 24989857, 40434438, 65424295, 105858733, 171283028
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- H. Zhao and X. Li, On the Fibonacci numbers of trees, Fib. Quart., 44 (2006), 32-38.
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Programs
-
Magma
a0:=4; a1:=9; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..35]]; // Vincenzo Librandi, Jan 25 2017
-
Maple
a:= n-> (<<0|1>, <1|1>>^n.<<4, 9>>)[1,1]: seq(a(n), n=0..40); # Alois P. Heinz, Feb 22 2017
-
Mathematica
a={};b=4;c=9;AppendTo[a,b];AppendTo[a,c];Do[b=b+c;AppendTo[a,b];c=b+c;AppendTo[a,c],{n,1,40,1}];a (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *) LinearRecurrence[{1,1},{4,9},40] (* Harvey P. Dale, Dec 15 2011 *)
-
PARI
a(n)=4*fibonacci(n-1)+9*fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
Formula
a(n) = 4*Fibonacci(n+2) + Fibonacci(n).
G.f.: (4 + 5*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n)= Fibonacci(n-2) + Fibonacci(n+5). - Gary Detlefs, Mar 31 2012
Comments