A022192 Gaussian binomial coefficients [n, 9] for q = 2.
1, 1023, 698027, 408345795, 222984027123, 117843461817939, 61291693863308051, 31627961868755063955, 16256896431763117598611, 8339787869494479328087443, 4274137206973266943778085267, 2189425218271613769209626653075
Offset: 9
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 9..200
Crossrefs
Programs
-
Magma
r:=9; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
-
Maple
seq(eval(expand(QDifferenceEquations:-QBinomial(n,9,q)),q=2),n=9..50);
-
Mathematica
QBinomial[Range[9,20],9,2] (* Harvey P. Dale, Jul 24 2016 *)
-
PARI
r=9; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
-
Sage
[gaussian_binomial(n,9,2) for n in range(9,21)] # Zerinvary Lajos, May 25 2009
Formula
a(n) = Product_{i=1..9} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 02 2016
G.f.: x^9/Product_{0<=i<=9} (1-2^i*x). - Robert Israel, Apr 23 2017
G.f. with an offset of 0: exp( Sum_{n >= 1} b(10*n)/b(n)*x^n/n ) = 1 + 1023*x + 698027*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 01 2025
Extensions
Offset changed by Vincenzo Librandi, Aug 03 2016