A022194 Gaussian binomial coefficients [n, 11] for q = 2.
1, 4095, 11180715, 26167664835, 57162391576563, 120843139740969555, 251413193158549532435, 518946525150879134496915, 1066968301301093995246996371, 2189425218271613769209626653075, 4488323837657412597958687922896275
Offset: 11
Keywords
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 11..200
Crossrefs
Programs
-
Magma
r:=11; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 03 2016
-
Mathematica
QBinomial[Range[11,30],11,2] (* Harvey P. Dale, Oct 21 2014 *)
-
PARI
r=11; q=2; for(n=r,30, print1(prod(j=1,r,(1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, May 30 2018
-
Sage
[gaussian_binomial(n,11,2) for n in range(11,22)] # Zerinvary Lajos, May 25 2009
Formula
a(n) = Product_{i=1..11} (2^(n-i+1)-1)/(2^i-1), by definition. - Vincenzo Librandi, Aug 03 2016
G.f. assuming an offset of 0: exp( Sum_{n >= 1} b(12*n)/b(n)*x^n/n ) = 1 + 4095*x + 11180715*x^2 + ..., where b(n) = A000225(n) = 2^n - 1. - Peter Bala, Jul 03 2025