cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022288 a(n) = n*(31*n-1)/2.

Original entry on oeis.org

0, 15, 61, 138, 246, 385, 555, 756, 988, 1251, 1545, 1870, 2226, 2613, 3031, 3480, 3960, 4471, 5013, 5586, 6190, 6825, 7491, 8188, 8916, 9675, 10465, 11286, 12138, 13021, 13935, 14880, 15856, 16863, 17901
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. similar sequences of the form n*((2*k+1)*n - 1)/2: A161680 (k=0), A000326 (k=1), A005476 (k=2), A022264 (k=3), A022266 (k=4), A022268 (k=5), A022270 (k=6), A022272 (k=7), A022274 (k=8), A022276 (k=9), A022278 (k=10), A022280 (k=11), A022282 (k=12), A022284 (k=13), A022286 (k=14), this sequence (k=15).

Programs

  • Mathematica
    Table[n (31 n - 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 15, 61}, 40] (* Harvey P. Dale, Mar 31 2014 *)
  • PARI
    a(n)=n*(31*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 31*n + a(n-1) - 16 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(0)=0, a(1)=15, a(2)=61; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Mar 31 2014
G.f.: x*(15 + 16*x)/(1 - x)^3. - R. J. Mathar, Sep 02 2016
a(n) = A000217(16*n-1) - A000217(15*n-1). In general, n*((2*k+1)*n - 1)/2 = A000217((k+1)*n-1) - A000217(k*n-1), and the ordinary generating function is x*(k + (k+1)*x)/(1 - x)^3. - Bruno Berselli, Oct 14 2016
E.g.f.: (x/2)*(31*x + 30)*exp(x). - G. C. Greubel, Aug 24 2017