cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022314 a(n) = a(n-1) + a(n-2) + 1, with a(0) = 0, a(1) = 9.

Original entry on oeis.org

0, 9, 10, 20, 31, 52, 84, 137, 222, 360, 583, 944, 1528, 2473, 4002, 6476, 10479, 16956, 27436, 44393, 71830, 116224, 188055, 304280, 492336, 796617, 1288954, 2085572, 3374527, 5460100, 8834628, 14294729, 23129358, 37424088, 60553447, 97977536, 158530984
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 9*x + 10*x^2 + 20*x^3 + 31*x^4 + 52*x^5 + 84*x^6 + 137*x^7 + 222*x^8 + ...
		

Crossrefs

Cf. A022100.

Programs

  • Mathematica
    LinearRecurrence[{2, 0, -1}, {0, 9, 10}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
    a[ n_] := 9 Fibonacci[n] + Fibonacci[n + 1] - 1; (* Michael Somos, Nov 21 2016 *)
  • PARI
    concat(0, Vec(-x*(-9+8*x) / ( (x-1)*(x^2+x-1) ) + O(x^30))) \\ Michel Marcus, Nov 20 2016
    {a(n) = 9*fibonacci(n) + fibonacci(n+1) - 1}; /* Michael Somos, Nov 21 2016 */

Formula

a(n) = -1 + (1/2)*((1 + sqrt(5))/2)^n + (19/10)sqrt(5)*((1 + sqrt(5))/2)^n - (19/10)*sqrt(5)*((1 - sqrt(5))/2)^n + (1/2)*((1 - sqrt(5))/2)^n, obtained using PURRS. - Alexander R. Povolotsky, Apr 22 2008
From R. J. Mathar, Apr 07 2011: (Start)
G.f.: -x*(-9+8*x) / ( (x-1)*(x^2+x-1) ).
a(n) = A022100(n) - 1. (End)
a(n) = F(n+2) + 8*F(n) - 1, where A000045. - G. C. Greubel, Aug 25 2017