cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022319 a(n) = a(n-1) + a(n-2) + 1 for n > 1, a(0)=1, a(1)=5.

Original entry on oeis.org

1, 5, 7, 13, 21, 35, 57, 93, 151, 245, 397, 643, 1041, 1685, 2727, 4413, 7141, 11555, 18697, 30253, 48951, 79205, 128157, 207363, 335521, 542885, 878407, 1421293, 2299701, 3720995, 6020697, 9741693
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A192762 (partial sums).

Programs

  • Haskell
    a022319 n = a022319_list !! (n-1)
    a022319_list = 1 : 5 : zipWith (+)
       (map (+ 1) a022319_list) (tail a022319_list)
    -- Reinhard Zumkeller, May 26 2013
    
  • Maple
    with(combinat): seq(fibonacci(n-2)+fibonacci(n+4)-1, n=0..29); # Zerinvary Lajos, Feb 01 2008
  • Mathematica
    LinearRecurrence[{2, 0, -1}, {1, 5, 7}, 40] (* Harvey P. Dale, Nov 19 2014 *)
  • PARI
    x='x+O('x^50); Vec((1 +3*x -3*x^2)/((1-x)*(1 -x -x^2))) \\ G. C. Greubel, Aug 25 2017

Formula

a(n) = Fibonacci(n-2) + Fibonacci(n+4) - 1. - Zerinvary Lajos, Feb 01 2008
From R. J. Mathar, Apr 07 2011: (Start)
G.f.: (1 + 3*x - 3*x^2) / ((1-x)*(1 - x - x^2)).
a(n) = A022112(n) - 1. (End)