cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A192744 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 1, 3, 8, 29, 133, 762, 5215, 41257, 369032, 3676209, 40333241, 483094250, 6271446691, 87705811341, 1314473334832, 21017294666173, 357096406209005, 6424799978507178, 122024623087820183, 2439706330834135361, 51219771117454755544
Offset: 0

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x)=x*p(n-1,x)+n! for n>0, where p(0,x)=1; see the Example. For an introduction to polynomial reduction, see A192232. The discussion at A192232 Comments continues here:
...
Let R(p,q,s) denote the "reduction of polynomial p by q->s" as defined at A192232. Suppose that q(x)=x^k for some k>0 and that s(x)=s(k,0)*x^(k-1)+s(k,1)*x^(k-2)+...+s(k,k-2)x+s(k,k-1).
...
First, we shall take p(x)=x^n, where n>=0; the results will be used to formulate R(p,q,s) for general p. Represent R(x^n,q,s) by
...
R(x^n)=s(n,0)*x^(k-1)+s(n,1)*x^(k-2)+...+s(n,k-2)*x+s(n,k-1).
...
Then each of the sequences u(n)=s(n,h), for h=0,1,...,k-1, satisfies this linear recurrence relation:
...
u(n)=s(k,0)*u(n-1)+s(k,1)*u(n-2)+...+s(k,k-2)*u(n-k-1)+s(k,k-1)*u(n-k), with initial values tabulated here:
...
n: ..s(n,0)...s(n,1)..s(n,2).......s(n,k-2)..s(n,k-1)
0: ....0........0.......0..............0.......1
1: ....0........0.......0..............1.......0
...
k-2: ..0........1.......0..............0.......0
k-1: ..0........0.......0..............0.......0
k: ..s(k,0)...s(k,1)..s(k,2).......s(k,k-2)..s(k,k-1)
...
That completes the formulation for p(x)=x^n. Turning to the general case, suppose that
...
p(n,x)=p(n,0)*x^n+p(n,1)*x^(n-1)+...+p(n,n-1)*x+p(n,n)
...
is a polynomial of degree n>=0. Then the reduction denoted by (R(p(n,x) by x^k -> s(x)) is the polynomial of degree k-1 given by the matrix product P*S*X, where P=(p(n,0)...p(n,1).........p(n-k)...p(n,n-k+1); X has all 0's except for main diagonal (x^(k-1), x^(k-2)...x,1); and S has
...
row 1: ... s(n,0) ... s(n,1) ...... s(n,k-2) . s(n,k-1)
row 2: ... s(n-1,0) . s(n-1,1) .... s(n-1,k-2) s(n-1,k-1)
...
row n-k+1: s(k,0).... s(k,1) ...... s(k,k-2) ..s(k,k-1)
row n-k+2: p(n,n-k+1) p(n,n-k+2) .. p(n,n-1) ..p(n,n)
*****
As a class of examples, suppose that (v(n)), for n>=0, is a sequence, that p(0,x)=1, and p(n,x)=v(n)+p(n-1,x) for n>0. If q(x)=x^2 and s(x)=x+1, and we write the reduction R(p(n,x)) as u1(n)*x+u2(n), then the sequences u1 and u2 are convolutions with the Fibonacci sequence, viz., let F=(0,1,1,2,3,5,8,...)=A000045 and let G=(1,0,1,1,2,3,5,8...); then u1=G**v and u2=F**v, where ** denotes convolution. Examples (with a few exceptions for initial terms):
...
If v(n)=n! then u1=A192744, u2=A192745.
If v(n)=n+1 then u1=A000071, u2=A001924.
If v(n)=2n then u1=A014739, u2=A027181.
If v(n)=2n+1 then u1=A001911, u2=A001891.
If v(n)=3n+1 then u1=A027961, u2=A023537.
If v(n)=3n+2 then u1=A192746, u2=A192747.
If v(n)=3n then u1=A154691, u2=A192748.
If v(n)=4n+1 then u1=A053311, u2=A192749.
If v(n)=4n+2 then u1=A192750, u2=A192751.
If v(n)=4n+3 then u1=A192752, u2=A192753.
If v(n)=4n then u1=A147728, u2=A023654.
If v(n)=5n+1 then u1=A192754, u2=A192755.
If v(n)=5n then u1=A166863, u2=A192756.
If v(n)=floor((n+1)tau) then u1=A192457, u2=A023611.
If v(n)=floor((n+2)/2) then u1=A052952, u2=A129696.
If v(n)=floor((n+3)/3) then u1=A004695, u2=A178982.
If v(n)=floor((n+4)/4) then u1=A080239, u2=A192758.
If v(n)=floor((n+5)/5) then u1=A124502, u2=A192759.
If v(n)=n+2 then u1=A001594, u2=A192760.
If v(n)=n+3 then u1=A022318, u2=A192761.
If v(n)=n+4 then u1=A022319, u2=A192762.
If v(n)=2^n then u1=A027934, u2=A008766.
If v(n)=3^n then u1=A106517, u2=A094688.

Examples

			The first five polynomials and their reductions:
1 -> 1
1+x -> 1+x
2+x+x^2 -> 3+2x
6+2x+x^2+x^3 -> 8+5x
24+6x+2x^2+x^3+x^4 -> 29+13x, so that
A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
		

Crossrefs

Cf. A192232.

Programs

  • Maple
    A192744p := proc(n,x)
        option remember;
        if n = 0 then
            1;
        else
            x*procname(n-1,x)+n! ;
            expand(%) ;
        end if;
    end proc:
    A192744 := proc(n)
        local p;
        p := A192744p(n,x) ;
        while degree(p,x) > 1 do
            p := algsubs(x^2=x+1,p) ;
            p := expand(p) ;
        end do:
        coeftayl(p,x=0,0) ;
    end proc: # R. J. Mathar, Dec 16 2015
  • Mathematica
    q = x^2; s = x + 1; z = 40;
    p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192744 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192745 *)

Formula

G.f.: (1-x)/(1-x-x^2)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
Conjecture: a(n) +(-n-2)*a(n-1) +2*(n-1)*a(n-2) +3*a(n-3) +(-n+2)*a(n-4)=0. - R. J. Mathar, May 04 2014
Conjecture: (-n+2)*a(n) +(n^2-n-1)*a(n-1) +(-n^2+3*n-3)*a(n-2) -(n-1)^2*a(n-3)
=0. - R. J. Mathar, Dec 16 2015

A014217 a(n) = floor(phi^n), where phi = (1+sqrt(5))/2 is the golden ratio.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 17, 29, 46, 76, 122, 199, 321, 521, 842, 1364, 2206, 3571, 5777, 9349, 15126, 24476, 39602, 64079, 103681, 167761, 271442, 439204, 710646, 1149851, 1860497, 3010349, 4870846, 7881196, 12752042, 20633239, 33385281, 54018521, 87403802
Offset: 0

Views

Author

Keywords

Comments

a(n) = floor(lim_{k->oo} Fibonacci(k)/Fibonacci(k-n)). - Jon Perry, Jun 10 2003
For n > 1, a(n) is the maximum element in the continued fraction for A000045(n)*phi. - Benoit Cloitre, Jun 19 2005
a(n) is also the curvature (rounded down) of the circle inscribed in the n-th kite arranged in a spiral, starting with a unit circle, as shown in the illustration in the links section. - Kival Ngaokrajang, Aug 29 2013
a(n) is the n-th Lucas number (A000032) if n is odd, and a(n) is the n-th Lucas number minus 1 if n is even. (Mario Catalani's formula below expresses this fact.) This is related to the fact that the powers of phi approach the values of the Lucas numbers, the odd powers from above and the even powers from below. - Geoffrey Caveney, Apr 18 2014
a(n) is the sum of the last summands over all Arndt compositions of n (see the Checa link). - Daniel Checa, Dec 25 2023
a(n) is the number of (saturated or unsaturated) substituted N-heterocycles in chemistry (N = nitrogen). That means the number of matchings in a cycle graph when the two maximum matchings in every cycle with an even number of vertices are indistinguishable (because the corresponding resonance structures in the molecule are equivalent). - Stefan Schuster, Mar 20 2025

Crossrefs

Programs

  • Haskell
    a014217 n = a014217_list !! n
    a014217_list = 1 : 1 : zipWith (+)
       a000035_list (zipWith (+) a014217_list $ tail a014217_list)
    -- Reinhard Zumkeller, Jan 06 2012
    
  • Magma
    [Floor( ((1+Sqrt(5))/2)^n ): n in [0..100]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    A014217 := proc(n)
        option remember;
        if n <= 3 then
            op(n+1,[1,1,2,4]) ;
        else
            procname(n-1)+2*procname(n-2)-procname(n-3)-procname(n-4) ;
        end if;
    end proc: # R. J. Mathar, Jun 23 2013
    #
    a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-1|-1|2|1>>^n. <<1, 1, 2, 4>>)[1, 1]:
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 12 2017
  • Mathematica
    Table[Floor[GoldenRatio^n], {n, 0, 36}] (* Vladimir Joseph Stephan Orlovsky, Dec 12 2008 *)
    LinearRecurrence[{1, 2, -1, -1}, {1, 1, 2, 4}, 40] (* Jean-François Alcover, Nov 05 2017 *)
  • PARI
    my(x='x+O('x^44)); Vec((1-x^2+x^3)/((1+x)*(1-x)*(1-x-x^2))) \\ Joerg Arndt, Jul 10 2023
    
  • Python
    from sympy import floor, sqrt
    def A014217(n): return floor(((1+sqrt(5))/2)**n) # Chai Wah Wu, Dec 17 2021
  • Sage
    [floor(golden_ratio^n) for n in range(37)] # Danny Rorabaugh, Apr 19 2015
    

Formula

a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4).
a(n) = a(n-1) + a(n-2) + (1-(-1)^n)/2 = a(n-1) + a(n-2) + A000035(n).
a(n) = A000032(n) - (1 + (-1)^n)/2. - Mario Catalani (mario.catalani(AT)unito.it), Jan 17 2003
G.f.: (1-x^2+x^3)/((1+x)*(1-x)*(1-x-x^2)). - R. J. Mathar, Sep 06 2008
a(2n-1) = (Fibonacci(4n+1)-2)/Fibonacci(2n+2). - Gary Detlefs, Feb 16 2011
a(n) = floor(Fibonacci(2n+3)/Fibonacci(n+3)). - Gary Detlefs, Feb 28 2011
a(2n) = Fibonacci(2*n-1) + Fibonacci(2*n+1) - 1. - Gary Detlefs, Mar 10 2011
a(n+2*k) - a(n) = A203976(k)*A000032(n+k) if k odd, a(n+2*k) - a(n) = A203976(k)*A000045(n+k) if k even, for k > 0. - Paul Curtz, Jun 05 2013
a(n) = A052952(n) - A052952(n-2) + A052952(n-3). - R. J. Mathar, Jun 13 2013
a(n+6) - a(n-6) = 40*A000045(n), case k=6 of my formula above. - Paul Curtz, Jun 13 2013
From Paul Curtz, Jun 17 2013: (Start)
a(n-3) + a(n+3) = A153382(n).
a(n-1) + a(n+2) = A022319(n). (End)
For k > 0, a(2k) = A169985(2k)-1 and a(2k+1) = A169985(2k+1) (which is equivalent to Catalani's 2003 formula). - Danny Rorabaugh, Apr 15 2015
a(n) = ((-1)^(1+n)-1)/2 + ((1-sqrt(5))/2)^n + ((1+sqrt(5))/2)^n. - Colin Barker, Nov 05 2017
a(n) = floor(2*sinh(n*arccsch(2))). - Federico Provvedi, Feb 23 2022
E.g.f.: 2*exp(x/2)*cosh(sqrt(5)*x/2) - cosh(x). - Stefano Spezia, Jul 26 2022
a(n) = floor(Fibonacci(n)*phi) + Fibonacci(n-1) = A074331(n) + A000045(n-1) = A052952(n-1) + A000045(n-1). This is the case k=1 of the formula (also found in A128440): floor(k * phi^n) = floor(Fibonacci(n)*k*phi) + Fibonacci(n-1) * k. - Chunqing Liu, Oct 03 2023

Extensions

Corrected by T. D. Noe, Nov 09 2006
Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A192762 Coefficient of x in the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

0, 1, 6, 13, 26, 47, 82, 139, 232, 383, 628, 1025, 1668, 2709, 4394, 7121, 11534, 18675, 30230, 48927, 79180, 128131, 207336, 335493, 542856, 878377, 1421262, 2299669, 3720962, 6020663, 9741658, 15762355, 25504048, 41266439, 66770524
Offset: 0

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x)=x*(n-1,x)+n+4 for n>0, where p(0,x)=1. For discussions of polynomial reduction, see A192232 and A192744.

Crossrefs

Cf. A192744, A192232, A022319 (first differences).

Programs

  • Mathematica
    p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n + 4;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A022319 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192762 *)

Formula

a(n) = 3*a(n-1)-2*a(n-2)-a(n-3)+a(n-4). G.f.: x*(3*x^2-3*x-1) / ((x-1)^2*(x^2+x-1)). [Colin Barker, Dec 08 2012]

A382379 Length of the long leg in the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

4, 0, 12, 24, 84, 220, 612, 1624, 4324, 11400, 30012, 78804, 206724, 541840, 1419612, 3718264, 9737284, 25496940, 66759012, 174788904, 457622004, 1198100200, 3136716012, 8212108324, 21499706884, 56287170720, 147362061612, 385799428824, 1010036895924
Offset: 0

Views

Author

Keywords

Examples

			The triangles begin:
  n=0:      3,     4,     5;
  n=1:      1,     0,     1;
  n=2:      5,    12,    13;
  n=3:      7,    24,    25;
  ...
This sequence gives the middle column
		

Crossrefs

Cf. A000032, A022319 (short leg), A382409 (semiperimeter), A382410 (area).

Formula

a(n) = 2*A000032(n)*(A000032(n) - 1).

A179991 Nonhomogeneous three-term sequence a(n) = a(n-1) + a(n-2) + n.

Original entry on oeis.org

2, 3, 8, 15, 28, 49, 84, 141, 234, 385, 630, 1027, 1670, 2711, 4396, 7123, 11536, 18677, 30232, 48929, 79182, 128133, 207338, 335495, 542858, 878379, 1421264, 2299671, 3720964, 6020665, 9741660, 15762357, 25504050, 41266441, 66770526, 108037003, 174807566
Offset: 1

Views

Author

Carmine Suriano, Aug 05 2010

Keywords

Comments

Extension of Fibonacci sequence, with the addition of natural number equal to the index.

Examples

			a(5) = a(4)+a(3)+5 = 8+15+5 = 28.
		

Crossrefs

Cf. A000045, A022319 (first differences).

Programs

  • PARI
    Vec(x*(x-2)*(x^2-x+1) / ((x^2+x-1)*(x-1)^2) + O(x^50)) \\ Colin Barker, Mar 12 2017

Formula

a(n) = F(n)+sum(i; i=1 to n)+sum((F(k)*sum(j;j=1 to k-n-1); k=0 to n-4))+2F(n-3).
G.f.: x*(x-2)*(x^2-x+1) / ( (x^2+x-1)*(x-1)^2 ).
Limiting ratio a(n+1)/a(n) is Phi = 1.618034519...
a(n) = 2*A000032(n+1)-n-3. - R. J. Mathar, Aug 09 2010
From Colin Barker, Mar 12 2017: (Start)
a(n) = 2^(-n)*(-3*2^n+(1-sqrt(5))^(1+n) + (1+sqrt(5))^n + sqrt(5)*(1+sqrt(5))^n - 2^n*n).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>4.
(End)

A258316 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 or 0011.

Original entry on oeis.org

5, 7, 7, 10, 9, 10, 15, 12, 12, 15, 23, 17, 15, 17, 23, 36, 25, 20, 20, 25, 36, 57, 38, 28, 25, 28, 38, 57, 91, 59, 41, 33, 33, 41, 59, 91, 146, 93, 62, 46, 41, 46, 62, 93, 146, 235, 148, 96, 67, 54, 54, 67, 96, 148, 235, 379, 237, 151, 101, 75, 67, 75, 101, 151, 237, 379, 612
Offset: 1

Views

Author

R. H. Hardin, Jun 29 2015

Keywords

Comments

Table starts
...5...7..10..15..23..36..57..91.146.235.379.612..989.1599.2586.4183.6767.10948
...7...9..12..17..25..38..59..93.148.237.381.614..991.1601.2588.4185.6769.10950
..10..12..15..20..28..41..62..96.151.240.384.617..994.1604.2591.4188.6772.10953
..15..17..20..25..33..46..67.101.156.245.389.622..999.1609.2596.4193.6777.10958
..23..25..28..33..41..54..75.109.164.253.397.630.1007.1617.2604.4201.6785.10966
..36..38..41..46..54..67..88.122.177.266.410.643.1020.1630.2617.4214.6798.10979
..57..59..62..67..75..88.109.143.198.287.431.664.1041.1651.2638.4235.6819.11000
..91..93..96.101.109.122.143.177.232.321.465.698.1075.1685.2672.4269.6853.11034
.146.148.151.156.164.177.198.232.287.376.520.753.1130.1740.2727.4324.6908.11089
.235.237.240.245.253.266.287.321.376.465.609.842.1219.1829.2816.4413.6997.11178
Apparently: put 1s in some number of nonadjacent columns or put 1s in some number of nonadjacent rows

Examples

			Some solutions for n=4 k=4
..0..0..0..0..0....1..1..1..1..1....0..0..0..0..0....1..1..1..1..1
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....1..1..1..1..1....0..0..0..0..0
..1..1..1..1..1....1..1..1..1..1....0..0..0..0..0....0..0..0..0..0
		

Crossrefs

Column 1 is A018910
Column 2 is A157727(n+3)
Column 3 is A187107(n+3)
Diagonal is A001595(n+2)
Superdiagonal 1 is A000071(n+5)
Superdiagonal 2 is A001610(n+3)
Superdiagonal 3 is A001595(n+4)
Superdiagonal 5 is A022308(n+5)
Superdiagonal 6 is A022319(n+5)
Superdiagonal 7 is A022407(n+5)
Superdiagonal 9 is A022323(n+7)

Formula

Empirical: T(n,k) = Fibonacci(n+3) +Fibonacci(k+3) -1
Empirical for rows, columns and nw-se diagonals: a(n) = 2*a(n-1) -a(n-3)
Showing 1-6 of 6 results.