A022387 Fibonacci sequence beginning 4, 30.
4, 30, 34, 64, 98, 162, 260, 422, 682, 1104, 1786, 2890, 4676, 7566, 12242, 19808, 32050, 51858, 83908, 135766, 219674, 355440, 575114, 930554, 1505668, 2436222, 3941890, 6378112, 10320002, 16698114, 27018116, 43716230, 70734346, 114450576, 185184922, 299635498, 484820420
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1, 1).
Crossrefs
Equals 2 * A022117.
Programs
-
GAP
List([0..40],n->4*Fibonacci(n+2)+22*Fibonacci(n)); # Muniru A Asiru, Mar 03 2018
-
Magma
I:=[4,30]; [n le 2 select I[n] else Self(n-1) + Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 17 2012
-
Magma
[4*Fibonacci(n+2) + 22*Fibonacci(n): n in [0..40]]; // G. C. Greubel, Mar 01 2018
-
Maple
with(combinat,fibonacci): seq(4*fibonacci(n+2)+22*fibonacci(n),n=0..35); # Muniru A Asiru, Mar 03 2018
-
Mathematica
LinearRecurrence[{1, 1}, {4, 30}, 30] (* Harvey P. Dale, Oct 16 2012 *) CoefficientList[Series[(4 + 26 * x)/(1 - x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 17 2012 *) Table[4 * Fibonacci[n + 2] + 22 * Fibonacci[n], {n, 0, 50}] (* G. C. Greubel, Mar 02 2018 *)
-
PARI
for(n=0, 40, print1(4*fibonacci(n+2) + 22*fibonacci(n), ", ")) \\ G. C. Greubel, Mar 01 2018
Formula
G.f.: (4+26*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = 4*Fibonacci(n+2) + 22*fibonacci(n) = 4*Fibonacci(n-1) + 30*Fibonacci(n). - G. C. Greubel, Mar 02 2018