A022390 Fibonacci sequence beginning 8, 17.
8, 17, 25, 42, 67, 109, 176, 285, 461, 746, 1207, 1953, 3160, 5113, 8273, 13386, 21659, 35045, 56704, 91749, 148453, 240202, 388655, 628857, 1017512, 1646369, 2663881, 4310250, 6974131, 11284381, 18258512, 29542893, 47801405, 77344298, 125145703, 202490001, 327635704, 530125705, 857761409, 1387887114, 2245648523, 3633535637, 5879184160
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (1, 1).
Crossrefs
Cf. A000032.
Programs
-
GAP
List([0..35],n->8*Fibonacci(n+2)+Fibonacci(n)); # Muniru A Asiru, Mar 03 2018
-
Magma
[8*Fibonacci(n+2) + Fibonacci(n): n in [0..50]]; // G. C. Greubel, Mar 02 2018
-
Maple
with(combinat,fibonacci): seq(8*fibonacci(n+2)+fibonacci(n),n=0..35); # Muniru A Asiru, Mar 03 2018
-
Mathematica
Table[8*Fibonacci[n + 2] + Fibonacci[n], {n, 0, 50}] (* or *) LinearRecurrence[{1,1}, {8,17}, 50] (* G. C. Greubel, Mar 02 2018 *)
-
PARI
for(n=0, 50, print1(8*fibonacci(n+2) + fibonacci(n), ", ")) \\ G. C. Greubel, Mar 02 2018
Formula
G.f.: (8+9*x)/(1-x-x^2). - Philippe Deléham, Nov 20 2008
a(n) = 8*Fibonacci(n+2) + Fibonacci(n). - Michel Marcus, Mar 03 2018
Extensions
Terms a(36) onward added by G. C. Greubel, Mar 02 2018