A022493 Fishburn numbers: number of linearized chord diagrams of degree n; also number of nonisomorphic interval orders on n unlabeled points.
1, 1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, 1422074, 10886503, 89903100, 796713190, 7541889195, 75955177642, 810925547354, 9148832109645, 108759758865725, 1358836180945243, 17801039909762186, 243992799075850037, 3492329741309417600, 52105418376516869150, 809029109658971635142
Offset: 0
Examples
From _Emanuele Munarini_, Oct 16 2012: (Start) There are a(4)=15 ascent sequences (dots for zeros): 01: [ . . . . ] 02: [ . . . 1 ] 03: [ . . 1 . ] 04: [ . . 1 1 ] 05: [ . . 1 2 ] 06: [ . 1 . . ] 07: [ . 1 . 1 ] 08: [ . 1 . 2 ] 09: [ . 1 1 . ] 10: [ . 1 1 1 ] 11: [ . 1 1 2 ] 12: [ . 1 2 . ] 13: [ . 1 2 1 ] 14: [ . 1 2 2 ] 15: [ . 1 2 3 ] (End) From _Joerg Arndt_, May 10 2013: (Start) There are a(4)=15 RGS of length 4 such that d(0)=0, 0 <= d(k) <= k, and d(j) != d(k)+1 for j < k (dots for zeros): 01: [ . . . . ] 02: [ . . . 1 ] 03: [ . . . 2 ] 04: [ . . . 3 ] 05: [ . . 1 1 ] 06: [ . . 1 2 ] 07: [ . . 1 3 ] 08: [ . . 2 . ] 09: [ . . 2 2 ] 10: [ . . 2 3 ] 11: [ . 1 1 1 ] 12: [ . 1 1 2 ] 13: [ . 1 1 3 ] 14: [ . 1 2 2 ] 15: [ . 1 2 3 ] (End) G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 53*x^5 + 217*x^6 + 1014*x^7 + 5335*x^8 + ...
References
- P. C. Fishburn, Interval Graphs and Interval Orders, Wiley, New York, 1985.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..488
- Scott Ahlgren, Byungchan Kim and Jeremy Lovejoy, Dissections of strange q-series, arXiv:1812.02922 [math.NT], 2018.
- George E. Andrews and Vít Jelínek, On q-Series Identities Related to Interval Orders, European Journal of Combinatorics, Volume 39, July 2014, 178-187; arXiv preprint, arXiv:1309.6669 [math.CO], 2013.
- George E. Andrews and James A. Sellers, Congruences for the Fishburn Numbers, arXiv:1401.5345 [math.NT], 2014.
- Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
- Dror Bar-Natan and Sergei Duzhin, Bibliography of Vassiliev Invariants.
- Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, 2014.
- Colin Bijaoui, Hans U. Boden, Beckham Myers, Robert Osburn, William Rushworth, Aaron Tronsgard and Shaoyang Zhou, Generalized Fishburn numbers and torus knots, arXiv:2002.00635 [math.NT], 2020.
- Béla Bollobás and Oliver Riordan, Linearized chord diagrams and an upper bound for Vassiliev invariants, J. Knot Theory Ramifications, Vol. 9, No. 7 (2000), pp. 847-853.
- Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes and Sergey Kitaev, (2+2)-free posets, ascent sequences and pattern avoiding permutations. arXiv:0806.0666 [math.CO], 2008-2009. [Mark Dukes (dukes(AT)hi.is), May 12 2009]
- Graham Brightwell and Mitchel T. Keller, Asymptotic enumeration of labelled interval orders, arXiv:1111.6766 [math.CO], 2011.
- Kathrin Bringmann, Yingkun Li and Robert C. Rhoades, Asymptotics for the number of row-Fishburn matrices, European Journal of Combinatorics, Vol. 41 (October 2014), pp. 183-196; preprint.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019.
- Giulio Cerbai, Modified ascent sequences and Bell numbers, arXiv:2305.10820 [math.CO], 2023. See p. 1.
- Giulio Cerbai and Anders Claesson, Fishburn trees, Univ. Iceland, 2023.
- Giulio Cerbai, Anders Claesson, and Bruce E. Sagan, Self-modified difference ascent sequences, arXiv:2408.06959 [math.CO], 2024.
- William Y. C. Chen, Alvin Y. L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics, Vol. 20, No. 1 (2013), #P76.
- Anders Claesson, Mark Dukes and Sergey Kitaev, A direct encoding of Stoimenow's matchings as ascent sequences, arXiv:0910.1619 [math.CO], 2009.
- Anders Claesson, Mark Dukes and Martina Kubitzke, Partition and composition matrices, arXiv:1006.1312 [math.CO], 2010-2011.
- Anders Claesson and Svante Linusson, n! matchings, n! posets, Proc. Amer. Math. Soc., Vol. 139 (2011), pp. 435-449.
- Dandan Chen, Sherry H. F. Yan and Robin D. P. Zhou, Equidistributed statistics on Fishburn matrices and permutations, arXiv:1808.04191 [math.CO], 2018.
- Julie Christophe, Jean-Paul Doignon and Samuel Fiorini, Counting Biorders, J. Integer Seq., Vol. 6 (2003), Article 03.4.3.
- CombOS - Combinatorial Object Server, Generate pattern-avoiding permutations.
- Matthieu Dien, Antoine Genitrini, and Frederic Peschanski, A Combinatorial Study of Async/Await Processes, Conf.: 19th Int'l Colloq. Theor. Aspects of Comp. (2022), (Analytic) Combinatorics of concurrent systems.
- Mark Dukes, Vít Jelínek and Martina Kubitzke, Composition Matrices, (2+2)-Free Posets and their Specializations, Electronic Journal of Combinatorics, Vol. 18, No. 1 (2011), Paper #P44.
- Mark Dukes, Sergey Kitaev, Jeffrey B. Remmel and Einar Steingrímsson, Enumerating (2+2)-free posets by indistinguishable elements, Journal of Combinatorics, Vol. 2, No. 1 (2011), pp. 139-163; arXiv preprint arXiv:1006.2696 [math.CO], 2010-2011.
- Niklas Eriksen and Jonas Sjöstrand, Equidistributed Statistics on Matchings and Permutations, Electronic Journal of Combinatorics, Vol. 21, No. 4 (2014), Article P4.43.
- Peter C. Fishburn, Intransitive indifference in preference theory: a survey, Operational Research, Vol. 18, No. 2 (1970), pp. 207-208.
- Peter C. Fishburn, Intransitive indifference with unequal indifference intervals, Journal of Mathematical Psychology, Vol. 7, No. 1 (1970), pp. 144-149.
- Shishuo Fu, Emma Yu Jin, Zhicong Lin, Sherry H. F. Yan and Robin D. P. Zhou, A new decomposition of ascent sequences and Euler-Stirling statistics, arXiv:1909.07277 [math.CO], 2019.
- Frank Garvan, Congruences and relations for r-Fishburn numbers, arXiv:1406.5611 [math.NT], (21-June-2014).
- Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018.
- Ankush Goswami, Abhash Kumar Jha, Byungchan Kim, and Robert Osburn, Asymptotics and sign patterns for coefficients in expansions of Habiro elements, arXiv:2204.02628 [math.NT], 2022.
- Stuart A. Hannah, Sieved Enumeration of Interval Orders and Other Fishburn Structures, arXiv:1502.05340 [math.CO], (18-February-2015).
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- P. E. Haxell, J. J. McDonald and S. K. Thomason, Counting interval orders, Order, Vol. 4 (1987), pp. 269-272.
- Hsien-Kuei Hwang and Emma Yu Jin, Asymptotics and statistics on Fishburn matrices and their generalizations, arXiv:1911.06690 [math.CO], 2019.
- Kazuhiro Hikami and Jeremy Lovejoy, Torus knots and quantum modular forms, arXiv preprint arXiv:1409.6243 [math.NT], 2014.
- Soheir Mohamed Khamis, Exact Counting of Unlabeled Rigid Interval Posets Regarding or Disregarding Height, Order (journal), published on-line, Vol. 29 (2011), pp. 443-461.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Vol. 119, No. 3 (April 2012), pp. 599-614; arXiv preprint arXiv:1106.2261 [math.CO], 2011.
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. Vol. 275, No. 1-3 (2004), pp. 165-175.
- Sergey Kitaev and Jeffrey Remmel, Enumerating (2+2)-free posets by the number of minimal elements and other statistics, Discrete Applied Mathematics, Vol. 159, No. 17 (2011), pp. 2098-2108.
- Paul Levande, Two New Interpretations of the Fishburn Numbers and their Refined Generating Functions, arXiv:1006.3013 [math.CO], 2010.
- Paul Levande, Fishburn diagrams, Fishburn numbers and their refined generating functions, Journal of Combinatorial Theory, Series A, Vol. 120, No. 1 (2013), pp. 194-217. - From _N. J. A. Sloane_, Dec 23 2012
- Zhicong Lin and Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation, Vol. 364 (2020), 124672.
- Robert Parviainen, Wilf classification of bi-vincular permutation patterns, arXiv:0910.5103 [math.CO], 2009.
- Lara K. Pudwell, Ascent sequences and the binomial convolution of Catalan numbers, arXiv:1408.6823 [math.CO], (28-August-2014).
- Lara Pudwell, Pattern-avoiding ascent sequences, Slides from a talk, 2015.
- James A. Reeds and Peter C. Fishburn, Counting split interval orders, Order, Vol. 18, No. 2 (2001), pp. 129-135.
- A. Stoimenow, Enumeration of chord diagrams and an upper bound for Vassiliev invariants, J. Knot Theory Ramifications, Vol. 7, No. 1 (1998), pp. 93-114; alternative link.
- Armin Straub, Congruences for Fishburn numbers modulo prime powers, arXiv:1407.7521 [math.NT], (28-July-2014).
- Sherry H. F. Yan, On a conjecture about enumerating (2 + 2)-free posets, arXiv:1006.1226 [math.CO], 2010.
- Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology, Vol. 40, No. 5 (2001), pp. 945-960.
- Yan X. Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015. See p. 11.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See p. 2.
Crossrefs
Cf. A138265.
Cf. A137251 (ascent sequences with k ascents), A218577 (ascent sequences with maximal element k), A175579 (ascent sequences with k zeros).
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n<1, 1, add(b(n-1, j, t+`if`(j>i,1,0)), j=0..t+1)) end: a:= n-> b(n-1, 0, 0): seq(a(n), n=0..30); # Alois P. Heinz, Nov 09 2012
-
Mathematica
max = 22; f[x_] := Sum[ Product[ 1-(1-x)^j, {j, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 27 2011, after g.f. *) b[n_, i_, t_] := b[n, i, t] = If[n<1, 1, Sum[b[n-1, j, t + If[j>i, 1, 0]], {j, 0, t+1}] ]; a[n_] := b[n-1, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 09 2015, after Alois P. Heinz *)
-
Maxima
F(x,n) := remainder(sum(product(1-(1-x)^i,i,1,k),k,0,n),x^(n+1)); makelist(coeff(F(x,n),x^n),n,0,20); /* Emanuele Munarini, Oct 16 2012 */
-
PARI
{a(n) = polcoeff( sum(i=0, n, prod(j=1, i, 1 - (1-x)^j, 1 + x * O(x^n))), n)}; /* Michael Somos, Jul 21 2006 */
-
Sage
# Program adapted from Alois P. Heinz's Maple code. # b(n,i,t) gives the number of length-n postfixes of ascent sequences # with a prefix having t ascents and last element i. @CachedFunction def b(n, i, t): if n <= 1: return 1 return sum(b(n - 1, j, t + (j > i)) for j in range(t + 2)) def a(n): return b(n, 0, 0) [a(n) for n in range(66)] # Joerg Arndt, May 11 2013
Formula
Zagier gives the g.f. Sum_{n>=0} Product_{i=1..n} (1-(1-x)^i).
Another formula for the g.f.: Sum_{n>=0} 1/(1-x)^(n+1) Product_{i=1..n} (1-1/(1-x)^i)^2. Proved by Andrews-Jelínek and Bringmann-Li-Rhoades. - Vít Jelínek, Sep 05 2014
Coefficients in expansion of Sum_{k>=0} Product_{j=1..k} (1-x^j) about x=1 give (-1)^n*a(n). - Bill Gosper, Aug 08 2001
G.f.: 1 + x*Q(0), where Q(k) = 1 + (1-(1-x)^(2*k+2))/(1 - (1-(1-x)^(2*k+3))/(1 -(1-x)^(2*k+3) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f. (conjecture): Q(0), where Q(k) = 1 + (1 - (1-x)^(2*k+1))/(1 - (1-(1-x)^(2*k+2))/(1 -(1-x)^(2*k+2) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 13 2013
G.f.: 1 + z(1)/( 1+0 - z(2)/( 1+z(2) - z(3)/( 1+z(3) - z(4)/( 1+z(4) - z(5)/(...))))) where z(k) = 1 - (1-x)^k; this is Euler's continued fraction for 1 + z(1) + z(1)*z(2) + z(1)*z(2)*z(3) + ... . - Joerg Arndt, Mar 11 2014
Asymptotics (proved by Zagier, 2001; see also Brightwell and Keller, 2011): a(n) ~ (12*sqrt(3)*exp(Pi^2/12)/Pi^(5/2)) * n!*sqrt(n)*(6/Pi^2)^n. - Vaclav Kotesovec, May 03 2014 [edited by Vít Jelínek, Sep 05 2014]
For any prime p that is not a quadratic residue mod 23, there is at least one value of j such that for all k and m, we have a(p^k*m - j) mod p^k = 0. E.g., for p=5 one may take j=1 and k=2, and conclude that a(25-1), a(50-1), a(75-1), a(100-1), ... are multiples of 25. See Andrews-Sellers, Garvan, and Straub. - Vít Jelínek, Sep 05 2014
From Peter Bala, Dec 17 2021: (Start)
Conjectural g.f.s:
A(x) = Sum_{n >= 1} n*(1 - x)^n*Product_{k = 1..n-1} (1 - (1 - x)^k).
x*A(x) = 1 - Sum_{n >= 1} n*(1 - x)^(2*n+1)*Product_{k = 1..n-1} (1 - (1 - x)^k). (End)
Extensions
Edited by N. J. A. Sloane, Nov 05 2011
Comments