cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022554 a(n) = Sum_{k=0..n} floor(sqrt(k)).

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 11, 13, 16, 19, 22, 25, 28, 31, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280
Offset: 0

Views

Author

Michel Tixier (tixier(AT)dyadel.net)

Keywords

Comments

Partial sums of A000196. - Michel Marcus, Mar 01 2016
It seems that a(47) = 197 is the largest prime in this sequence. Tested for n <= 10^11. - Hugo Pfoertner, Oct 26 2020 [This is true. See A214036]
By drawing a picture of the sum Integral_{x=0..n} ceiling(sqrt(x)) dx, one easily sees that it is equal to n*m - Sum_{k=1..m} (k^2 - 1) with m = floor(sqrt(n)), whence the formula. - M. F. Hasler, Apr 23 2022
We can prove that 197 is the largest prime in this sequence. From the formula, 6*a(n) = m*(6n - 2m^2 - 3m + 5) where m = floor(sqrt(n)). Therefore 6*a(n) is divisible by m, which means that a(n) is divisible by A060789(m). For n>48, we have m>6, so A060789(m)>1, so a(n) is not prime; testing all n up to 48, we see that a(47)=197 is the last prime. - Mikhail Lavrov, Dec 09 2023

Examples

			G.f. = x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 11*x^7 + 13*x^8 + 16*x^9 + ...
		

References

  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd Edition, Addison-Wesley, 1994, Eq. 3.27 on page 87.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, 3rd Edition, Addison-Wesley, 1997, Ex. 43 of section 1.2.4.
  • K. H. Rosen, Discrete Mathematics and Its Application, 6th Edition, McGraw-Hill, 2007, Ex. 25 of section 2.4.

Crossrefs

Cf. A000196 (first differences), A025224, A214036, A000330.

Programs

  • Magma
    [&+[Floor(Sqrt(k)): k in [0..n]]: n in [0..50]]; // G. C. Greubel, Feb 26 2018
    
  • Maple
    seq(add(floor(sqrt(k)), k=0..n), n=0..59);
  • Mathematica
    Accumulate[Floor[Sqrt[Range[0,60]]]] (* Harvey P. Dale, Feb 16 2011 *)
    Table[Sum[Floor[Sqrt[i]], {i,0,n}], {n,0,50}] (* G. C. Greubel, Dec 22 2016 *)
  • PARI
    a(n)=sum(k=1,n,sqrtint(k)) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    a(n)=my(k=sqrtint(n));k*(n-(2*k+5)/6*(k-1)) \\ Charles R Greathouse IV, Jan 12 2012
    
  • Python
    from math import isqrt
    def A022554(n): return (m:=isqrt(n))*(m*(-(m<<1)-3)+6*n+5)//6 # Chai Wah Wu, Aug 03 2022

Formula

a(0)=0, a(1)=1; a(n) = 2*a(n-1) - a(n-2) if n is not a perfect square; a(n) = 2*a(n-1) - a(n-2) + 1 if n is a perfect square.
a(n) = floor(sqrt(n)) * (n-1/6*(2*floor(sqrt(n))+5)*(floor(sqrt(n))-1)). - Yong Kong (ykong(AT)curagen.com), Mar 10 2001
a(n) = (2/3)*n^(3/2) - (1/2)*n + O(sqrt(n)). - Charles R Greathouse IV, Jan 12 2012
G.f.: Sum_{k>=1} x^(k^2)/(1 - x)^2. - Ilya Gutkovskiy, Dec 22 2016
a(n) = m*(n - m^2/3 - m/2 + 5/6) where m = floor(sqrt(n)). - M. F. Hasler, Apr 23 2022
a(n) = n*t(n) - A000330(t(n)), where t(n) = floor(sqrt(n)). - Ridouane Oudra, Mar 05 2025

Extensions

More terms from Yong Kong (ykong(AT)curagen.com), Mar 10 2001