cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022568 Expansion of Product_{m>=1} (1+x^m)^3.

Original entry on oeis.org

1, 3, 6, 13, 24, 42, 73, 120, 192, 302, 465, 702, 1046, 1536, 2226, 3195, 4536, 6378, 8896, 12306, 16896, 23045, 31224, 42048, 56310, 75000, 99384, 131072, 172071, 224910, 292774, 379608, 490338, 631104, 809472, 1034814, 1318707, 1675344, 2122176, 2680602, 3376728, 4242432, 5316562, 6646272
Offset: 0

Views

Author

Keywords

Comments

The g.f. Product_{m >= 1} (1 + x^m)^3 = Product_{m >= 1} (1 - x^m + 2*x^m)^3 == Product_{m >= 1} (1 - x^m)^3 == Sum_{m >= 0} (-1)^m*(2*m + 1)*q^(m*(m+1)/2) (mod 2) by an identity of Jacobi. It follows that a(n) is odd iff n = m*(m + 1)/2 for some nonnegative integer m. - Peter Bala, Jan 07 2025

Crossrefs

Column k=3 of A286335.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^3:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 26 2018
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+q^m)^3,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
    nmax = 50; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 3; poly[[3]] = 3; poly[[4]] = 1; Do[Do[Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];, {p, 1, 3}], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Mar 31 2018 *)
  • PARI
    x='x+O('x^51); Vec(prod(m=1, 50, (1 + x^m)^3)) \\ Indranil Ghosh, Apr 03 2017
    

Formula

a(n) ~ exp(Pi * sqrt(n)) / (8 * n^(3/4)) * (1 + (Pi/16 - 3/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Mar 05 2015, extended Jan 16 2017
a(0) = 1, a(n) = (3/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(3*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018
G.f.: Sum_{n >= 0} q^(n*(n+1)/2) / Sum_{n in Z} (-1)^n * q^(n^2). - Peter Bala, Jan 07 2025