cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A022599 Expansion of Product_{m>=1} (1+q^m)^(-4).

Original entry on oeis.org

1, -4, 6, -8, 17, -28, 38, -56, 84, -124, 172, -232, 325, -448, 594, -784, 1049, -1388, 1796, -2320, 3005, -3864, 4912, -6216, 7877, -9940, 12430, -15488, 19309, -23972, 29580, -36408, 44766, -54876, 66978, -81536, 99150, -120272, 145374, -175344, 211242
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
McKay-Thompson series of class 12J for the Monster group.

Examples

			G.f. = 1 - 4*x + 6*x^2 - 8*x^3 + 17*x^4 - 28*x^5 + 38*x^6 - 56*x^7 + ...
T12J = 1/q - 4*q^5 + 6*q^11 - 8*q^17 + 17*q^23 - 28*q^29 + 38*q^35 + ...
		

References

  • T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 116, q_2^4.

Crossrefs

Column k=4 of A286352.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          -4*irem(d, 2)*d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, May 02 2014
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[x^2])^4, {x, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    nmax = 50; CoefficientList[Series[Product[1/(1 + x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^2 + A))^4, n))};

Formula

Expansion of chi(-x)^4 in powers of x where chi() is a Ramanujan theta function.
Expansion of q^(1/6) * (eta(q) / eta(q^2))^4 in powers of q.
Euler transform of period 2 sequence [ -4, 0, ...]. - Michael Somos, Apr 26 2008
Given G.f. A(x) then B(q) = (A(q^6) / q)^2 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u * (16 + u * v) - v^2. - Michael Somos, Apr 26 2008
Given G.f. A(x) then B(q) = A(q^6) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 4 * v * (v + u^2) - w^2 * (v - u^2). - Michael Somos, Apr 26 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is the g.f. of A022569.
Convolution inverse is A022569. Convolution square of A022597. Convolution square is A007259.
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/3)) / (2 * 6^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f.: exp(-4*Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018