cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052005 Number of Fibonacci numbers (A000045) with length n in base 2.

Original entry on oeis.org

2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

There are no double 2's except at the very start because multiplying by phi^3 adds at least 2 to Fn's binary length. For a similar reason there aren't any 3's because multiplying by phi^2 increments at least by one F(n)'s binary length.
Also a(n) is the number of Fibonacci numbers F(k) between powers of 2 such that 2^n <= F(k) < 2^(n+1). - Frank M Jackson, Apr 14 2013

Examples

			F(17) = 1597{10} = 11000111101{2} the only one of length 11 and F(18) = 2584{10} = 101000011000{2} the only one of length 12 so both a(11) and a(12) equal 1.
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; kmax = Floor[ k /. FindRoot[ Log[2, Fibonacci[k]] == nmax, {k, nmax, 2*nmax}]]; A052005 = Tally[ Length /@ IntegerDigits[ Fibonacci[ Range[kmax]], 2]][[All, 2]] (* Jean-François Alcover, May 07 2012 *)
    termcount[n1_] := (m1=0; While[Fibonacci[m1]<2^n1, m1++]; m1); Table[termcount[n+1]-termcount[n], {n, 0, 200}] (* Frank M Jackson, Apr 14 2013 *)
    Most[Transpose[Tally[Table[Length[IntegerDigits[Fibonacci[n], 2]], {n, 140}]]][[2]]] (* T. D. Noe, Apr 16 2013 *)

Formula

Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2)/log(phi) = A104287. - Amiram Eldar, Nov 21 2021

A166986 a(n) = 2*floor((n+2)/log(2)) - 4.

Original entry on oeis.org

4, 6, 10, 12, 16, 18, 20, 24, 26, 30, 32, 36, 38, 42, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 72, 76, 78, 82, 84, 88, 90, 94, 96, 98, 102, 104, 108, 110, 114, 116, 120, 122, 124, 128, 130, 134, 136, 140, 142, 146, 148, 150, 154, 156, 160, 162, 166, 168, 172, 174, 176
Offset: 1

Views

Author

Stephen Crowley, Oct 26 2009

Keywords

Comments

With a different offset, partial sums of A022934, cf. formula.
The first terms appear to satisfy a linear recurrence relation of order 10 (or higher if more terms are included), but this can be proved to be impossible, cf. R. Israel's post to the SeqFan list. - M. F. Hasler, Apr 11 2019

Crossrefs

Cf. A022934.

Programs

Formula

a(n) = 2*floor((n+2)/log(2)) - 4.
a(n) = 2*Sum_{k=2,..,n+1} A022934(k).

A078614 First differences of A072633.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Jon Perry, Dec 10 2002

Keywords

Comments

Differs from A022934 and A081129. - Georg Fischer, May 02 2025

Examples

			a(2)=2, as A072633(2)=4 and A072633(1)=2.
		

Crossrefs

Cf. A072633.

Programs

  • PARI
    pu(m,n)=local(s); s=0; for (i=1,m,s=s+i^n); s
    ox=1; for (k=1,60,x=1; while (pu(x,k)<(x+1)^k,x++); print1((x-ox), ", "); ox=x)

Extensions

a(1) corrected by Georg Fischer, May 02 2025
Showing 1-3 of 3 results.