A144064
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->k).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 9, 10, 5, 0, 1, 5, 14, 22, 20, 7, 0, 1, 6, 20, 40, 51, 36, 11, 0, 1, 7, 27, 65, 105, 108, 65, 15, 0, 1, 8, 35, 98, 190, 252, 221, 110, 22, 0, 1, 9, 44, 140, 315, 506, 574, 429, 185, 30, 0, 1, 10, 54, 192, 490, 918, 1265, 1240, 810, 300, 42, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 5, 9, 14, 20, ...
0, 3, 10, 22, 40, 65, ...
0, 5, 20, 51, 105, 190, ...
0, 7, 36, 108, 252, 506, ...
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-44. (Annotated scanned copy)
- G. E. Bergum and V. E. Hoggatt, Jr., Numerator polynomial coefficient array for the convolved Fibonacci sequence, Fib. Quart., 14 (1976), 43-48. See Table 1.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 8.
- N. J. A. Sloane, Transforms
- Index entries for expansions of Product_{k >= 1} (1-x^k)^m
Columns k=0-24 give:
A000007,
A000041,
A000712,
A000716,
A023003,
A023004,
A023005,
A023006,
A023007,
A023008,
A023009,
A023010,
A005758,
A023011,
A023012,
A023013,
A023014,
A023015,
A023016,
A023017,
A023018,
A023019,
A023020,
A023021,
A006922.
-
# DedekindEta is defined in A000594.
A144064Column(k, len) = DedekindEta(len, -k)
for n in 0:8 A144064Column(n, 6) |> println end # Peter Luschny, Mar 10 2018
-
with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; `if`(n=0, 1, add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n) end end: A:= (n,k)-> etr(j->k)(n): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
a[0, ] = 1; a[, 0] = 0; a[n_, k_] := SeriesCoefficient[ Product[1/(1 - x^j)^k, {j, 1, n}], {x, 0, n}]; Table[a[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
etr[p_] := Module[{b}, b[n_] := b[n] = If[n==0, 1, Sum[Sum[d*p[d], {d, Divisors[j]} ]*b[n-j], {j, 1, n}]/n]; b]; A[n_, k_] := etr[k&][n]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 30 2015, after Alois P. Heinz *)
-
Mat(apply( {A144064_col(k,nMax=9)=Col(1/eta('x+O('x^nMax))^k,nMax)}, [0..9])) \\ M. F. Hasler, Aug 04 2024
A341225
Expansion of (-1 + Product_{k>=1} 1 / (1 - x^k))^6.
Original entry on oeis.org
1, 12, 78, 370, 1437, 4848, 14719, 41148, 107610, 266296, 628941, 1427118, 3127369, 6646440, 13746081, 27744926, 54782271, 106029918, 201512970, 376630680, 693161334, 1257641676, 2251764699, 3982196910, 6961522279, 12038699766, 20607718317, 34938910360
Offset: 6
-
b:= proc(n, k) option remember; `if`(k<2, `if`(n=0, 1-k, combinat[
numbpart](n)), (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n, 6):
seq(a(n), n=6..33); # Alois P. Heinz, Feb 07 2021
-
nmax = 33; CoefficientList[Series[(-1 + Product[1/(1 - x^k), {k, 1, nmax}])^6, {x, 0, nmax}], x] // Drop[#, 6] &
A355350
G.f. A(x,y) satisfies: x*y = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 9, 6, 1, 0, 22, 27, 10, 1, 0, 51, 98, 66, 15, 1, 0, 108, 315, 340, 135, 21, 1, 0, 221, 918, 1495, 910, 246, 28, 1, 0, 429, 2492, 5838, 5070, 2086, 413, 36, 1, 0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1, 0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1, 0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1
Offset: 0
G.f.: A(x,y) = 1 + x*y + x^2*(3*y + y^2) + x^3*(9*y + 6*y^2 + y^3) + x^4*(22*y + 27*y^2 + 10*y^3 + y^4) + x^5*(51*y + 98*y^2 + 66*y^3 + 15*y^4 + y^5) + x^6*(108*y + 315*y^2 + 340*y^3 + 135*y^4 + 21*y^5 + y^6) + x^7*(221*y + 918*y^2 + 1495*y^3 + 910*y^4 + 246*y^5 + 28*y^6 + y^7) + x^8*(429*y + 2492*y^2 + 5838*y^3 + 5070*y^4 + 2086*y^5 + 413*y^6 + 36*y^7 + y^8) + x^9*(810*y + 6372*y^2 + 20805*y^3 + 24543*y^4 + 14280*y^5 + 4284*y^6 + 652*y^7 + 45*y^8 + y^9) + x^10*(1479*y + 15525*y^2 + 68816*y^3 + 106535*y^4 + 83559*y^5 + 35168*y^6 + 8100*y^7 + 981*y^8 + 55*y^9 + y^10) + ...
where
x*y = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also, given P(x) is the partition function (A000041),
x*y*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 1];
n=3: [0, 9, 6, 1];
n=4: [0, 22, 27, 10, 1];
n=5: [0, 51, 98, 66, 15, 1];
n=6: [0, 108, 315, 340, 135, 21, 1];
n=7: [0, 221, 918, 1495, 910, 246, 28, 1];
n=8: [0, 429, 2492, 5838, 5070, 2086, 413, 36, 1];
n=9: [0, 810, 6372, 20805, 24543, 14280, 4284, 652, 45, 1];
n=10: [0, 1479, 15525, 68816, 106535, 83559, 35168, 8100, 981, 55, 1];
n=11: [0, 2640, 36280, 213945, 423390, 432930, 243208, 78282, 14355, 1420, 66, 1];
n=12: [0, 4599, 81816, 630890, 1563705, 2033244, 1472261, 629280, 160965, 24145, 1991, 78, 1];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
-
{T(n,k) = my(A=[1,y],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
A[#A] = -polcoeff( sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[n+1],k,y)}
for(n=0,12, for(k=0,n, print1( T(n,k),", "));print(""))
A339321
Dirichlet g.f.: Product_{k>=2} 1 / (1 - k^(-s))^6.
Original entry on oeis.org
1, 6, 6, 27, 6, 42, 6, 98, 27, 42, 6, 204, 6, 42, 42, 315, 6, 204, 6, 204, 42, 42, 6, 792, 27, 42, 98, 204, 6, 330, 6, 918, 42, 42, 42, 1044, 6, 42, 42, 792, 6, 330, 6, 204, 204, 42, 6, 2682, 27, 204, 42, 204, 6, 792, 42, 792, 42, 42, 6, 1716, 6, 42, 204, 2492, 42, 330
Offset: 1
A355360
G.f. A(x,y) satisfies: x*y*A(x,y) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x,y)^n, with coefficients T(n,k) of x^n*y^k in A(x,y) given as a triangle read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 2, 0, 9, 12, 5, 0, 22, 54, 46, 14, 0, 51, 196, 282, 175, 42, 0, 108, 630, 1360, 1365, 666, 132, 0, 221, 1836, 5635, 8190, 6321, 2541, 429, 0, 429, 4984, 20850, 41405, 45326, 28448, 9724, 1430, 0, 810, 12744, 70737, 184527, 270060, 237209, 125532, 37323, 4862, 0, 1479, 31050, 223652, 745745, 1404102, 1625932, 1193116, 546039, 143650, 16796
Offset: 0
G.f.: A(x,y) = 1 + x*y + x^2*(3*y + 2*y^2) + x^3*(9*y + 12*y^2 + 5*y^3) + x^4*(22*y + 54*y^2 + 46*y^3 + 14*y^4) + x^5*(51*y + 196*y^2 + 282*y^3 + 175*y^4 + 42*y^5) + x^6*(108*y + 630*y^2 + 1360*y^3 + 1365*y^4 + 666*y^5 + 132*y^6) + x^7*(221*y + 1836*y^2 + 5635*y^3 + 8190*y^4 + 6321*y^5 + 2541*y^6 + 429*y^7) + x^8*(429*y + 4984*y^2 + 20850*y^3 + 41405*y^4 + 45326*y^5 + 28448*y^6 + 9724*y^7 + 1430*y^8) + x^9*(810*y + 12744*y^2 + 70737*y^3 + 184527*y^4 + 270060*y^5 + 237209*y^6 + 125532*y^7 + 37323*y^8 + 4862*y^9) + x^10*(1479*y + 31050*y^2 + 223652*y^3 + 745745*y^4 + 1404102*y^5 + 1625932*y^6 + 1193116*y^7 + 546039*y^8 + 143650*y^9 + 16796*y^10) + ...
where
x*y*A(x) = ... - x^10/A(x,y)^5 + x^6/A(x,y)^4 - x^3/A(x,y)^3 + x/A(x,y)^2 - 1/A(x,y) + 1 - x*A(x,y) + x^3*A(x,y)^2 - x^6*A(x,y)^3 + x^10*A(x,y)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x,y)^n + ...
also,
x*y*A(x)*P(x) = (1 - x*A(x,y))*(1 - 1/A(x,y)) * (1 - x^2*A(x,y))*(1 - x/A(x,y)) * (1 - x^3*A(x,y))*(1 - x^2/A(x,y)) * (1 - x^4*A(x,y))*(1 - x^3/A(x,y)) * ... * (1 - x^n*A(x,y))*(1 - x^(n-1)/A(x,y)) * ...
TRIANGLE.
The triangle of coefficients T(n,k) of x^n*y^k in A(x,y), for k = 0..n in row n, begins:
n=0: [1];
n=1: [0, 1];
n=2: [0, 3, 2];
n=3: [0, 9, 12, 5];
n=4: [0, 22, 54, 46, 14];
n=5: [0, 51, 196, 282, 175, 42];
n=6: [0, 108, 630, 1360, 1365, 666, 132];
n=7: [0, 221, 1836, 5635, 8190, 6321, 2541, 429];
n=8: [0, 429, 4984, 20850, 41405, 45326, 28448, 9724, 1430];
n=9: [0, 810, 12744, 70737, 184527, 270060, 237209, 125532, 37323, 4862];
n=10: [0, 1479, 31050, 223652, 745745, 1404102, 1625932, 1193116, 546039, 143650, 16796];
n=11: [0, 2640, 72560, 667005, 2784110, 6565030, 9646462, 9242178, 5826171, 2349490, 554268, 58786];
n=12: [0, 4599, 163632, 1892670, 9729720, 28161819, 51126740, 61555824, 50308245, 27806065, 10023948, 2143428, 208012];
...
in which column 1 appears to equal A000716, the coefficients in P(x)^3,
and column 2 appears to equal twice A023005, the coefficients in P(x)^6,
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + ... + A000041(n)*x^n + ...
Also, the power series expansions of P(x)^3 and P(x)^6 begin
P(x)^3 = 1 + 3*x + 9*x^2 + 22*x^3 + 51*x^4 + 108*x^5 + 221*x^6 + 429*x^7 + 810*x^8 + 1479*x^9 + 2640*x^10 + ... + A000716(n)*x^n + ...
P(x)^6 = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 918*x^5 + 2492*x^6 + 6372*x^7 + 15525*x^8 + 36280*x^9 + 81816*x^10 + ... + A023005(n)*x^n + ...
The main diagonal equals the Catalan numbers (A000108), where g.f. C(x) = 1 + x*C(x)^2 begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ...
-
{T(n,k) = my(A=[1,y],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*(#A)+9));
A[#A] = polcoeff( x*y*Ser(A) - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));polcoeff(A[n+1],k,y)}
for(n=0,12, for(k=0,n, print1( T(n,k),", "));print(""))
Showing 1-5 of 5 results.
Comments