A023172 Self-Fibonacci numbers: numbers k that divide Fibonacci(k).
1, 5, 12, 24, 25, 36, 48, 60, 72, 96, 108, 120, 125, 144, 168, 180, 192, 216, 240, 288, 300, 324, 336, 360, 384, 432, 480, 504, 540, 552, 576, 600, 612, 625, 648, 660, 672, 684, 720, 768, 840, 864, 900, 960, 972, 1008, 1080, 1104, 1152, 1176, 1200, 1224, 1296, 1320
Offset: 1
Keywords
References
- S. Wolfram, "A new kind of science", p. 891
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (first 500 terms from T. D. Noe, next 4600 terms from Lars Blomberg)
- Oisín Flynn-Connolly, On the divisibility of sums of Fibonacci numbers, arXiv:2504.09938 [math.NT], 2025. See p. 1.
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 75.
- Tamas Lengyel, Divisibility Properties by Multisection, Dec 2000. Fib Q. 41 (1) 72
- Florian Luca and Emanuele Tron, The Distribution of Self-Fibonacci Divisors, Proceedings of the Thirteenth Conference of the Canadian Number Theory Association (CNTA XIII), Ayşe Alaca, Şaban Alaca, and Kenneth Williams, ed. (2015), pp. 149-158. arXiv:1410.2489 [math.NT], 2014.
- Chris Smyth, The terms in Lucas Sequences divisible by their indices, JIS 13 (2010) #10.2.4.
Crossrefs
Programs
-
Haskell
import Data.List (elemIndices) a023172 n = a023172_list !! (n-1) a023172_list = map (+ 1) $ elemIndices 0 $ zipWith mod (tail a000045_list) [1..] -- Reinhard Zumkeller, Oct 13 2011
-
Magma
[n: n in [1..2*10^3] | Fibonacci(n) mod n eq 0 ]; // Vincenzo Librandi, Sep 17 2015
-
Maple
fmod:= proc(n,m) local M,t; uses LinearAlgebra:-Modular; if m <= 1 then return 0 fi; if m < 2^25 then t:= float[8] else t:= integer fi; M:= Mod(m,<<1,1>|<1,0>>,t); round(MatrixPower(m,M,n)[1,2]) end proc: select(n -> fmod(n,n)=0, [$1..2000]); # Robert Israel, May 10 2016
-
Mathematica
a=0; b=1; c=1; Do[a=b; b=c; c=a+b; If[Mod[c, n]==0, Print[n]], {n, 3, 1500}] Select[Range[1350], Mod[Fibonacci[ # ], # ]==0&] (* Harvey P. Dale *)
-
PARI
is(n)=((Mod([1,1;1,0],n))^n)[1,2]==0 \\ Charles R Greathouse IV, Feb 03 2014
Extensions
Edited by Don Reble, Sep 07 2003
Comments