A023196 Nondeficient numbers: numbers k such that sigma(k) >= 2k; union of A000396 and A005101.
6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Paul Pollack and Carl Pomerance, Some problems of Erdős on the sum-of-divisors function, For Richard Guy on his 99th birthday: May his sequence be unbounded, Trans. Amer. Math. Soc. Ser. B (2016) Vol. 3, 1-26.
Programs
-
GAP
Filtered([1..260],n->Sigma(n)>=2*n); # Muniru A Asiru, Dec 04 2018
-
Magma
[n: n in [1..300] | not (2*n gt DivisorSigma(1,n))]; // Vincenzo Librandi, Dec 05 2018
-
Maple
A023196:=n->`if`(numtheory[sigma](n)>=2*n, n, NULL): seq(A023196(n), n=1..380); # Wesley Ivan Hurt, Apr 18 2017
-
Mathematica
Select[Range[300], DivisorSigma[1, #] >= 2# &] (* Harvey P. Dale, Sep 26 2014 *)
-
PARI
is(n)=sigma(n,-1)>=2 \\ Charles R Greathouse IV, Mar 09 2014
Comments