cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A086126 Duplicate of A023287.

Original entry on oeis.org

61, 101, 1811, 3491, 4091, 5711, 5801, 6361, 7121, 10391, 10771, 11311, 13421, 15131
Offset: 1

Views

Author

Keywords

A023256 Primes that remain prime through 2 iterations of function f(x) = 6x + 1.

Original entry on oeis.org

2, 17, 47, 61, 101, 131, 151, 331, 367, 461, 607, 751, 937, 971, 1151, 1321, 1327, 1361, 1481, 1511, 1607, 1811, 1847, 1907, 2081, 2287, 2347, 2357, 2791, 2851, 2971, 3251, 3257, 3457, 3491, 3581, 3761, 4007, 4091, 4127, 4861, 4967, 5231, 5347, 5387, 5407
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 6*p+1 and 36*p+7 are also primes. - Vincenzo Librandi, Aug 04 2010
Subsequence of A007693. - Michel Marcus, Oct 17 2015

Crossrefs

Cf. A007693 (1 iteration), A023287 (3 iterations).

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n) and IsPrime(6*n+1) and IsPrime(36*n+7)] // Vincenzo Librandi, Aug 04 2010
    
  • Mathematica
    Select[Prime[Range[800]],AllTrue[Rest[NestList[6#+1&,#,2]],PrimeQ]&] (* Harvey P. Dale, Oct 17 2020 *)
  • PARI
    lista(nn) = forprime(n=1, nn, if (isprime(p=6*n+1) && isprime(6*p+1), print1(n, ", "))); \\ Michel Marcus, Oct 17 2015

Formula

a(n) == 1 or 7 (mod 10) for n > 1. - John Cerkan, Sep 14 2016

A023347 Primes which remain prime through 5 iterations of function f(x) = 8x + 1.

Original entry on oeis.org

831167, 1154567, 2502767, 3019787, 3675197, 5056577, 6352487, 14519177, 26724377, 43003577, 47378927, 47695607, 56406197, 86332457, 86611757, 99568757, 121967987, 126435527, 127990997, 128149127, 128975057, 145281557, 155715407
Offset: 1

Views

Author

Keywords

Examples

			First chain is {831167, 6649337, 53194697, 425557577, 3404460617, 27235684937};
If p is congruent to {1,3,7,9} mod 10, then consecutive iterates are congruent to {9,5,7,3}, {3,1,7,5}, {5,9,7,1} respectively; so only 10k+7 may remain prime through five iterations, as sequence demonstrates nicely. - _Labos Elemer_, Jul 23 2003
		

Crossrefs

Programs

  • Mathematica
    k=0; m=8; Do[s=Prime[n]; s1=m*s+1; s2=m*s1+1; s3=m*s2+1; s4=m*s3+1; s5=m*s4+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5], k=k+1; Print[s]], {n, 1, 1000000}]
    it5Q[n_]:=AllTrue[Rest[NestList[8#+1&,n,5]],PrimeQ]; Select[Prime[Range[ 9*10^6]],it5Q] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 12 2014 *)

Formula

{p, 8p+1, 64p+9, 512p+73, 4096p+585, 32768p+4681} are all primes, where the initial p is prime.
a(n) == 197 (mod 210). - John Cerkan, Nov 04 2016

A086127 Numbers k such that k remains prime after five iteration of function f(j) = 14*f(j)+1, starting at f(1) = prime.

Original entry on oeis.org

4889, 18059, 62639, 225527, 557093, 604973, 700703, 804077, 806903, 837077, 1341203, 1363403, 1932197, 2004269, 2062703, 2284637, 2797463, 3157379, 3493103, 3746399, 3995687, 4155413, 4227893, 4493297, 5534939, 5708603
Offset: 1

Views

Author

Labos Elemer, Jul 23 2003

Keywords

Comments

{p, 14p+1, 196p+15, 2744p+211, 38416p+2955, 537824p+41371} are all primes, where p is prime.

Examples

			First chain is: {4889,68447,958259,13415627,187818779,2629462907}.
10th chain is {837077,11719079,164067107,2296939499,32157152987,450200141819}.
		

Crossrefs

Programs

  • Mathematica
    k=0; m=14; Do[s=Prime[n]; s1=m*s+1; s2=m*s1+1; s3=m*s2+1; s4=m*s3+1; s5=m*s4+1; If[PrimeQ[s]&&PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3]&&PrimeQ[s4]&&PrimeQ[s5], k=k+1; Print[s]], {n, 1, 1000000}]
    Select[Range[6000000],And@@PrimeQ[NestList[14#+1&,#,5]]&] (* Harvey P. Dale, Sep 17 2012 *)
Showing 1-4 of 4 results.