cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007693 Primes p such that 6*p + 1 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 23, 37, 47, 61, 73, 83, 101, 103, 107, 131, 137, 151, 173, 181, 233, 241, 257, 263, 271, 277, 283, 293, 311, 313, 331, 347, 367, 373, 397, 443, 461, 467, 503, 557, 577, 593, 601, 607, 641, 653, 661, 683, 727, 751, 761, 773, 787, 797, 853
Offset: 1

Views

Author

Keywords

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002476, A016921, A024899, A051644, A091178, A023256 (subset: 6*(6p+1)+1 also prime).
Prime terms of A024899.

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(6*n+1)]; // Vincenzo Librandi, Nov 18 2010
    
  • Mathematica
    Select[Prime@Range[150], PrimeQ[6# + 1] &] (* Ray Chandler, Mar 14 2007  *)
  • PARI
    isok(k) = isprime(k) && isprime(6*k+1); \\ Amiram Eldar, Feb 24 2025

Formula

a(n) = (A051644(n)-1)/6.

Extensions

Extended by Ray Chandler, Mar 14 2007

A023287 Primes that remain prime through 3 iterations of function f(x) = 6x + 1.

Original entry on oeis.org

61, 101, 1811, 3491, 4091, 5711, 5801, 6361, 7121, 10391, 10771, 11311, 13421, 15131, 17791, 18911, 19471, 20011, 24391, 25601, 25951, 30091, 35251, 41911, 45631, 47431, 55631, 58711, 62921, 67891, 70451, 70571, 72271, 74051, 74161, 75431, 80471, 86341
Offset: 1

Views

Author

Keywords

Comments

Primes p such that s1=p, s2=6*s1+1, s3=6*s2+1 and s4=6*s3+1 are primes forming a special chain of four primes. A fifth term in such a chain cannot arise. See A085956, A086361, A086362.
Entries in chains are congruent to {1,7,3,9} mod 10.

Examples

			First chain is {61, 367, 2203, 13219};
319th chain is {1291391, 7748347, 46490083, 278940499}.
		

Crossrefs

Subsequence of A007693, A023256, and A024899.

Programs

  • Magma
    [n: n in [1..150000] | IsPrime(n) and IsPrime(6*n+1) and IsPrime(36*n+7) and IsPrime(216*n+43)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    k=0; m=6; Do[s=Prime[n]; s1=m*s+1; s2=m*s1+1; s3=m*s2+1; If[PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3], k=k+1; Print[{k, n, s, s1, s2, s3}]], {n, 1, 100000}] (* edited by Zak Seidov, Feb 08 2011 *)
    thrQ[n_]:=AllTrue[Rest[NestList[6#+1&,n ,3]],PrimeQ]; Select[Prime[Range[9000]],thrQ] (* Harvey P. Dale, Mar 03 2024 *)

Formula

{p, 6p+1, 36p+7, 216p+43} are all primes, where p is prime.

Extensions

Additional comments from Labos Elemer, Jul 23 2003

A263309 Numbers k such that p=6k+1 and q=6k+1 are primes.

Original entry on oeis.org

1, 2, 6, 10, 12, 17, 25, 30, 40, 45, 46, 47, 52, 55, 61, 62, 66, 96, 100, 101, 110, 121, 125, 131, 142, 151, 156, 172, 177, 186, 195, 200, 220, 221, 230, 237, 242, 255, 261, 282, 296, 305, 312, 331, 332, 356, 360, 367, 370, 380, 381, 382, 391, 425, 432, 446, 461, 465, 475, 495, 506, 510, 527, 530
Offset: 1

Views

Author

Zak Seidov, Oct 13 2015

Keywords

Comments

Subsequence of A024899.
The subsequence of primes in this sequence is A023256.

Crossrefs

Programs

  • Maple
    isA263309 := proc(n)
        if isprime(6*n+1) then
            if isprime(36*n+7) then
                true;
            else
                false;
            end if;
        else
            false;
        end if;
    end proc:
    for n from 1 to 100 do
        if isA263309(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Oct 17 2015
  • Mathematica
    Select[Range[1000],PrimeQ[p=6*#+1]&& PrimeQ[q=6*p+1]&]
  • PARI
    isok(n) = isprime(p=6*n+1) && isprime(6*p+1); \\ Michel Marcus, Oct 17 2015
Showing 1-3 of 3 results.