cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023394 Prime factors of Fermat numbers.

Original entry on oeis.org

3, 5, 17, 257, 641, 65537, 114689, 274177, 319489, 974849, 2424833, 6700417, 13631489, 26017793, 45592577, 63766529, 167772161, 825753601, 1214251009, 6487031809, 70525124609, 190274191361, 646730219521, 2710954639361, 2748779069441, 4485296422913, 6597069766657
Offset: 1

Views

Author

Keywords

Comments

Is it true that this sequence consists of the odd primes p with 2^(2^p) == 1 (mod p)? (David Wilson, Jul 31 2008). Answer from Max Alekseyev: Yes! If prime p divides Fm = 2^(2^m)+1, then 2^(2^(m+1)) == 1 (mod p) and p is of the form p = k*2^(m+2)+1 > m+1. Squaring the last congruence p-(m+1) times, we get 2^(2^p) == 1 (mod p). On the other hand, if 2^(2^p) == 1 (mod p) for prime p, consider a sequence 2^(2^0), 2^(2^1), 2^(2^2), ..., 2^(2^p). Modulo p this sequence ends with a bunch of 1's but just before the first 1 we must see -1 (as the only other square root of 1 modulo prime p), i.e. for some m, 2^(2^m) == -1 (mod p), implying that p divides Fermat number 2^(2^m) + 1.
Also primes p such that the multiplicative order of 2 (mod p) is a power of 2. A theorem of Lucas states that if m>1 and prime p divides 1+2^2^m (the m-th Fermat number), then p = 1+k*2^(m+2) for some integer k. - T. D. Noe, Jan 29 2009
Wilfrid Keller analyzed the current status of the search for prime factors of Fermat number and stated that all prime factors less than 10^19 are now known. He sent me terms a(25) to a(50). - T. D. Noe, Feb 01 2009, Feb 03 2009, Jan 14 2013
Křížek, Luca, & Somer (2002) show that the sum of the reciprocals of this sequence converge, answering a question of Golomb (1955). - Charles R Greathouse IV, Jul 15 2013
To test if a prime p is a member, it suffices to check if the multiplicative order of 2 modulo p is a power of two. But it is obvious that the order is a divisor of p-1. Therefore it is enough to test if 2^(2^j) == 1 (mod p) where 2^j is the largest power of two that divides p-1. - Jeppe Stig Nielsen, Mar 13 2022
Primes p such that 2^(2^p) == 2^p - 1 (mod p); i.e., prime numbers in A373580. - Thomas Ordowski, Jun 11 2024

References

  • Michal Krížek, Florian Luca and Lawrence Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001.

Crossrefs

Supersequence of A229851.

Programs

  • Maple
    q:=p->(isprime(p) and irem(2^(2^padic:-ordp(p-1, 2))-1, p) = 0):
    select(q, [$1..10^5])[]; # Lorenzo Sauras Altuzarra, Feb 20 2023
  • Mathematica
    Select[Prime[Range[100000]],IntegerQ[Log[2,MultiplicativeOrder[2,# ]]]&] (* T. D. Noe, Jan 29 2009 *)
  • PARI
    is(p)=p>2 && Mod(2,p)^lift(Mod(2,znorder(Mod(2,p)))^p)==1 && isprime(p) \\ Charles R Greathouse IV, Feb 04 2013
    
  • PARI
    my(isfermatdivisor(m)=if(m>0, if(m==1, return(1), v=valuation(m-1, 2); c=0; if(m>2, e=logint(m-1, 2); if(e==v&&Mod(m-1, e)==0, t=logint(v, 2); c=1)); if(v>6&&c==0, x=2; t=0; for(i=0, v-2, if(x+1==m, c=1; break); s=x*x; x=s-s\m*m; t++)); if(c==1, print((m-1)/2^v"*2^"v" + 1 divides 2^(2^"t") + 1")); return(c)))); L=List([]); forstep(m=3, 63766529, 2, if(isprime(m)&&isfermatdivisor(m), listput(L, m))); print(); print(Vec(L)); \\ Arkadiusz Wesolowski, Jan 16 2018
    
  • PARI
    forprime(p=2,,Mod(2,p)^(2^valuation(p-1,2))==1&&print1(p,", ")) \\ Jeppe Stig Nielsen, Mar 13 2022

Formula

a(n) is a prime factor of the Fermat number 1+2^2^A023395(n). - T. D. Noe, Feb 01 2009
a(n) >> n^2 log^2 n, see Křížek, Luca, & Somer. - Charles R Greathouse IV, Jul 16 2013
Sum_{n>=1} 1/a(n) = A344784. - Amiram Eldar, May 30 2021