A023394 Prime factors of Fermat numbers.
3, 5, 17, 257, 641, 65537, 114689, 274177, 319489, 974849, 2424833, 6700417, 13631489, 26017793, 45592577, 63766529, 167772161, 825753601, 1214251009, 6487031809, 70525124609, 190274191361, 646730219521, 2710954639361, 2748779069441, 4485296422913, 6597069766657
Offset: 1
Keywords
References
- Michal Krížek, Florian Luca and Lawrence Somer, 17 Lectures on Fermat Numbers, Springer-Verlag NY 2001.
Links
- T. D. Noe, Table of n, a(n) for n = 1..50 (from Wilfrid Keller)
- Wilfrid Keller, Prime factors k.2^n + 1 of Fermat numbers F_m.
- Michal Krížek, Florian Luca and Lawrence Somer, On the convergence of series of reciprocals of primes related to the Fermat numbers, J. Number Theory, Vol. 97 (2002), pp. 95-112.
- Sourangshu Ghosh and Pranjal Jain, On Fermat Numbers and Munafo's Conjecture, ResearchGate (2021).
- A. K. Lenstra, H. W. Lenstra, M. S. Manasse and J. M. Pollard, The factorization of the ninth Fermat number, Math. Comp., Vol. 64. No. 203 (1995), 1357.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof (2012), arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018.
- Robert Munafo, Prime Factors of Fermat Numbers.
- Mercedes Orús-Lacort, Fermat numbers are not prime numbers for n >= 5, ResearchGate (2020).
- Lorenzo Sauras-Altuzarra, Some properties of the factors of Fermat numbers, Art Discrete Appl. Math. (2022).
Programs
-
Maple
q:=p->(isprime(p) and irem(2^(2^padic:-ordp(p-1, 2))-1, p) = 0): select(q, [$1..10^5])[]; # Lorenzo Sauras Altuzarra, Feb 20 2023
-
Mathematica
Select[Prime[Range[100000]],IntegerQ[Log[2,MultiplicativeOrder[2,# ]]]&] (* T. D. Noe, Jan 29 2009 *)
-
PARI
is(p)=p>2 && Mod(2,p)^lift(Mod(2,znorder(Mod(2,p)))^p)==1 && isprime(p) \\ Charles R Greathouse IV, Feb 04 2013
-
PARI
my(isfermatdivisor(m)=if(m>0, if(m==1, return(1), v=valuation(m-1, 2); c=0; if(m>2, e=logint(m-1, 2); if(e==v&&Mod(m-1, e)==0, t=logint(v, 2); c=1)); if(v>6&&c==0, x=2; t=0; for(i=0, v-2, if(x+1==m, c=1; break); s=x*x; x=s-s\m*m; t++)); if(c==1, print((m-1)/2^v"*2^"v" + 1 divides 2^(2^"t") + 1")); return(c)))); L=List([]); forstep(m=3, 63766529, 2, if(isprime(m)&&isfermatdivisor(m), listput(L, m))); print(); print(Vec(L)); \\ Arkadiusz Wesolowski, Jan 16 2018
-
PARI
forprime(p=2,,Mod(2,p)^(2^valuation(p-1,2))==1&&print1(p,", ")) \\ Jeppe Stig Nielsen, Mar 13 2022
Formula
a(n) >> n^2 log^2 n, see Křížek, Luca, & Somer. - Charles R Greathouse IV, Jul 16 2013
Sum_{n>=1} 1/a(n) = A344784. - Amiram Eldar, May 30 2021
Comments