cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023424 Expansion of (1+2*x+3*x^2+4*x^3+5*x^4)/(1-x-x^2-x^3-x^4-x^5).

Original entry on oeis.org

1, 3, 7, 15, 31, 57, 113, 223, 439, 863, 1695, 3333, 6553, 12883, 25327, 49791, 97887, 192441, 378329, 743775, 1462223, 2874655, 5651423, 11110405, 21842481, 42941187, 84420151, 165965647, 326279871, 641449337, 1261056193, 2479171199, 4873922247, 9581878847
Offset: 0

Views

Author

Keywords

Comments

Traces of successive powers of pentanacci matrix. - Artur Jasinski, Jan 05 2007

Crossrefs

Essentially the same as A074048.

Programs

  • Magma
    I:=[1,3,7,15,31]; [n le 5 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4) + Self(n-5): n in [1..30]]; // G. C. Greubel, Jan 01 2018
  • Mathematica
    LinearRecurrence[{1, 1, 1, 1, 1}, {1, 3, 7, 15, 31}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
    CoefficientList[Series[(1+2*x+3*x^2+4*x^3+5*x^4)/(1-x-x^2-x^3-x^4-x^5), {x, 0, 50}], x] (* G. C. Greubel, Jan 01 2018 *)
  • Maxima
    a(n):=n*sum(1/k*sum(binomial(k,r)*sum(binomial(r,m)*sum(binomial(m,j)*binomial(j,n-m-k-j-r),j,0,m),m,0,r),r,0,k),k,1,n);
    
  • PARI
    Vec((1+2*x+3*x^2+4*x^3+5*x^4)/(1-x-x^2-x^3-x^4-x^5)+O(x^100)) \\ Charles R Greathouse IV, Feb 24 2011
    

Formula

a(n) = n * Sum_{k=1..n} (1/k)*Sum_{r=0..k} binomial(k,r)*Sum_{m=0..r} binomial(r,m) * Sum_{j=0..m} binomial(m,j)*binomial(j,n-m-k-j-r), n>0. - Vladimir Kruchinin, Feb 22 2011