A023424 Expansion of (1+2*x+3*x^2+4*x^3+5*x^4)/(1-x-x^2-x^3-x^4-x^5).
1, 3, 7, 15, 31, 57, 113, 223, 439, 863, 1695, 3333, 6553, 12883, 25327, 49791, 97887, 192441, 378329, 743775, 1462223, 2874655, 5651423, 11110405, 21842481, 42941187, 84420151, 165965647, 326279871, 641449337, 1261056193, 2479171199, 4873922247, 9581878847
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..199 from T. D. Noe)
- Shingo Saito, Tatsushi Tanaka, and Noriko Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values, J. Int. Seq. 14 (2011) # 11.2.4, Table 3.
- Igor Szczyrba, RafaĆ Szczyrba, and Martin Burtscher, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Eric Weisstein's World of Mathematics, Lucas n-Step Number
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1).
Crossrefs
Essentially the same as A074048.
Programs
-
Magma
I:=[1,3,7,15,31]; [n le 5 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4) + Self(n-5): n in [1..30]]; // G. C. Greubel, Jan 01 2018
-
Mathematica
LinearRecurrence[{1, 1, 1, 1, 1}, {1, 3, 7, 15, 31}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *) CoefficientList[Series[(1+2*x+3*x^2+4*x^3+5*x^4)/(1-x-x^2-x^3-x^4-x^5), {x, 0, 50}], x] (* G. C. Greubel, Jan 01 2018 *)
-
Maxima
a(n):=n*sum(1/k*sum(binomial(k,r)*sum(binomial(r,m)*sum(binomial(m,j)*binomial(j,n-m-k-j-r),j,0,m),m,0,r),r,0,k),k,1,n);
-
PARI
Vec((1+2*x+3*x^2+4*x^3+5*x^4)/(1-x-x^2-x^3-x^4-x^5)+O(x^100)) \\ Charles R Greathouse IV, Feb 24 2011
Formula
a(n) = n * Sum_{k=1..n} (1/k)*Sum_{r=0..k} binomial(k,r)*Sum_{m=0..r} binomial(r,m) * Sum_{j=0..m} binomial(m,j)*binomial(j,n-m-k-j-r), n>0. - Vladimir Kruchinin, Feb 22 2011
Comments