cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A127221 a(n) = 2^n*pentanacci(n) or (2^n)*A023424(n-1).

Original entry on oeis.org

2, 12, 56, 240, 992, 3648, 14464, 57088, 224768, 883712, 3471360, 13651968, 53682176, 211075072, 829915136, 3263102976, 12830244864, 50447253504, 198353354752, 779904614400, 3066503888896, 12057176965120, 47407572189184, 186401664532480, 732912043425792
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[2, 12, 56, 240, 992]; [n le 5 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4) + 32*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[2*{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{2, 4, 8, 16, 32}, {2, 12, 56, 240, 992}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-2*x*(1 +4*x +12*x^2 +32*x^3 +80*x^4)/(-1 +2*x +4*x^2 +8*x^3 +16*x^4 +32*x^5)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({2,2,2,2,2},{2,0,0,0,0},{0,2,0,0,0},{0,0,2,0,0},{0,0,0,2,0})^n].
a(n) = 2^n * Trace of matrix [({1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0})^n].
G.f.: -2*x*(1 +4*x +12*x^2 +32*x^3 +80*x^4)/(-1 +2*x +4*x^2 +8*x^3 +16*x^4 +32*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; corrected by R. J. Mathar, Sep 16 2009
a(n) = 2*a(n-1)+4*a(n-2)+8*a(n-3)+16*a(n-4)+32*a(n-5). - Colin Barker, Sep 02 2013

Extensions

Definition corrected by R. J. Mathar, Sep 17 2009
More terms from Colin Barker, Sep 02 2013

A127222 a(n) = 3^n*pentanacci(n) or (3^n)*A023424(n-1).

Original entry on oeis.org

3, 27, 189, 1215, 7533, 41553, 247131, 1463103, 8640837, 50959287, 300264165, 1771292853, 10447598619, 61618989627, 363414767589, 2143339285311, 12641143135581, 74555586323649, 439717218548643, 2593383067853775, 15295369041550269, 90209719910309895
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3, 27, 189, 1215, 7533]; [n le 5 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3) + 81*Self(n-4) + 243*Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1, 1, 1}, {1, 0, 0, 0, 0}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27, 81, 243}, {3, 27, 189, 1215, 7533}, 50] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5)) \\ G. C. Greubel, Dec 19 2017
    

Formula

a(n) = Trace of matrix [({3,3,3,3,3},{3,0,0,0,0},{0,3,0,0,0},{0,0,3,0,0},{0,0,0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1,1,1},{1,0,0,0,0},{0,1,0,0,0},{0,0,1,0,0},{0,0,0,1,0})^n].
G.f.: -3*x*(1 +6*x +27*x^2 +108*x^3 +405*x^4)/(-1 +3*x +9*x^2 +27*x^3 +81*x^4 +243*x^5). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009
a(n) = 3*a(n-1)+9*a(n-2)+27*a(n-3)+81*a(n-4)+243*a(n-5). - Colin Barker, Sep 02 2013

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
Definition corrected by R. J. Mathar, Sep 17 2009
More terms from Colin Barker, Sep 02 2013

A074048 Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15.

Original entry on oeis.org

5, 1, 3, 7, 15, 31, 57, 113, 223, 439, 863, 1695, 3333, 6553, 12883, 25327, 49791, 97887, 192441, 378329, 743775, 1462223, 2874655, 5651423, 11110405, 21842481, 42941187, 84420151, 165965647, 326279871, 641449337, 1261056193, 2479171199, 4873922247
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 14 2002

Keywords

Comments

These pentanacci numbers follow the same pattern as Lucas, generalized tribonacci(A001644) and generalized tetranacci (A073817) numbers: Binet's formula is a(n)=r1^n+r^2^n+r3^n+r4^n+r5^n, with r1, r2, r3, r4, r5 roots of the characteristic polynomial. a(n) is also the trace of A^n, where A is the pentamatrix ((1,1,0,0,0),(1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1),(1,0,0,0,0)).
For n >= 5, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain five consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). (For n=1,2,3,4 the statement is still true provided we allow the sequence to wrap around itself on a circle). - Petros Hadjicostas, Dec 18 2016
a(3407) has 1001 decimal digits. - Michael De Vlieger, Dec 28 2016

Crossrefs

Cf. A000078, A001630, A001644, A000032, A073817, A106297 (Pisano Periods).
Essentially the same as A023424.
Cf. A106273.

Programs

  • Mathematica
    CoefficientList[Series[(5-4*x-3*x^2-2*x^3-x^4)/(1-x-x^2-x^3-x^4-x^5), {x, 0, 30}], x]
    LinearRecurrence[{1, 1, 1, 1, 1}, {5, 1, 3, 7, 15}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • PARI
    polsym(polrecip(1-x-x^2-x^3-x^4-x^5),33) \\ Joerg Arndt, Jan 28 2019

Formula

a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4) +a(n-5).
G.f.: (5-4*x-3*x^2-2*x^3-x^4) / (1-x-x^2-x^3-x^4-x^5).
a(n) = 2*a(n-1) -a(n-6), n>5. [Vincenzo Librandi, Dec 20 2010]
For k>0 and n>=0, a(n+5*k) = a(k)*a(n+4*k) - A123127(k-1)*a(n+3*k) + A123126(k-1)*a(n+2*k) - A074062(k)*a(n+k) + a(n). For example, if k=4, n=3, we have a(n+5*k) = a(23) = 5651423, a(4)*a(19) - A123127(3)*a(15) + A123126(3)*a(1695) - A074062(4)*a(7) + a(3) = (15)*(378329) - (1)*(25327) + (1)*(1695) - (-1)*(113) + (7) = 5651423. - Kai Wang, Sep 13 2020
From Kai Wang, Dec 16 2020: (Start)
For k >= 0,
| a(k+4) a(k+5) a(k+6) a(k+7) a(k+8) |
| a(k+3) a(k+4) a(k+5) a(k+6) a(k+7) |
det | a(k+2) a(k+3) a(k+4) a(k+5) a(k+6) | = 9584 = A106273(5).
| a(k+1) a(k+2) a(k+3) a(k+4) a(k+5) |
| a(k) a(k+1) a(k+2) a(k+3) a(k+4) |
(End)

A251653 5-step Fibonacci sequence starting with 0,0,1,0,0.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 4, 7, 14, 28, 55, 108, 212, 417, 820, 1612, 3169, 6230, 12248, 24079, 47338, 93064, 182959, 359688, 707128, 1390177, 2733016, 5372968, 10562977, 20766266, 40825404, 80260631, 157788246, 310203524, 609844071, 1198921876, 2357018348, 4633776065, 9109763884, 17909324244, 35208804417
Offset: 0

Views

Author

Arie Bos, Dec 06 2014

Keywords

Comments

Doubling the entries > 1 as 1, 2, 2, 4, 4, 7, 7, 14, 14, 28, 28, 55, 55,... (offset 0) gives Nyblom's palindromic binary strings having no 5-runs of 1's. - R. J. Mathar, Mar 28 2025

Crossrefs

Programs

  • J
    (see www.jsoftware.com) First construct the generating matrix
    1  1  1  1  1
    1  2  2  2  2
    2  3  4  4  4
    4  6  7  8  8
    8 12 14 15 16
    Given that matrix one can produce the first 5*200 numbers by
    , M(+/ . *)^:(i.250) 0 0 1 0 0x
  • Mathematica
    LinearRecurrence[{1, 1, 1, 1, 1}, {0, 0, 1, 0, 0}, 100] (* G. C. Greubel, May 27 2016 *)

Formula

a(n+5) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4).
G.f.: x^2*(x^2 + x - 1)/(x^5 + x^4 + x^3 + x^2 + x - 1). - Chai Wah Wu, May 27 2016
Showing 1-4 of 4 results.