A023531 a(n) = 1 if n is of the form m(m+3)/2, otherwise 0.
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
As a triangle: 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 G.f. = 1 + x^2 + x^5 + x^9 + x^14 + x^20 + x^27 + x^35 + x^44 + x^54 + ... From _Kevin Ryde_, Dec 06 2019: (Start) . 1 Triangular spiral: start at S; / \ go a unit step forward, 0 0 . turn left a(n)*120 degrees, / \ . repeat. 0 1 0 . / / \ \ \ Each side's length is 1 greater 0 0 0 0 0 than that of the previous side. / / \ \ \ 0 0 S---1 0 0 / / \ \ 0 1---0---0---0---1 0 / \ 1---0---0---0---0---0---0---1 (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 0..100127
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Kevin Ryde, Fractint L-System drawing the spiral.
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions.
- Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind.
- Index entries for characteristic functions.
Programs
-
Haskell
a023531 n = a023531_list !! n a023531_list = concat $ iterate ([0,1] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k] (p:ps) + (q:qs) = p + q : ps + qs ps + qs = ps ++ qs (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs * = [] -- Reinhard Zumkeller, Apr 02 2011
-
Maple
seq(op([0$m,1]),m=0..10); # Robert Israel, Jan 18 2015 # alternative A023531 := proc(n) option remember ; local m,t ; for m from 0 do t := m*(m+3)/2 ; if t > n then return 0 ; elif t = n then return 1 ; end if; end do: end proc: seq(A023531(n),n=0..40) ; # R. J. Mathar, May 15 2025
-
Mathematica
If[IntegerQ[(Sqrt[9+8#]-3)/2],1,0]&/@Range[0,100] (* Harvey P. Dale, Jul 27 2011 *) a[ n_] := If[ n < 0, 0, Boole @ IntegerQ @ Sqrt[ 8 n + 9]]; (* Michael Somos, May 17 2014 *) a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8)) - 1) / x, {x, 0, n}]; (* Michael Somos, May 17 2014 *)
-
PARI
{a(n) = if( n<0, 0, issquare(8*n + 9))}; /* Michael Somos, May 17 2014 */
-
PARI
A023531(n)=issquare(8*n+9) \\ M. F. Hasler, Apr 12 2018
-
Python
from math import isqrt def A023531(n): return int((k:=n+1<<1)==(m:=isqrt(k))*(m+1)) # Chai Wah Wu, Nov 09 2024
-
Sage
def A023531_row(n) : if n == 0: return [1] return [0] + A023531_row(n-1) for n in (0..9): print(A023531_row(n)) # Peter Luschny, Jul 22 2012
Formula
If (floor(sqrt(2*n))-(2*n/(floor(sqrt(2*n)))) = -1, 1, 0). - Gerald Hillier, Sep 11 2005
a(n) = 1 - A023532(n); a(n) = 1 - mod(floor(((10^(n+2) - 10)/9)10^(n+1 - binomial(floor((1+sqrt(9+8n))/2), 2) - (1+floor(log((10^(n+2) - 10)/9, 10))))), 10). - Paul Barry, May 25 2004
a(n) = floor((sqrt(9+8n)-1)/2) - floor((sqrt(1+8n)-1)/2). - Paul Barry, May 25 2004
a(n) = round(sqrt(2n+3)) - round(sqrt(2n+2)). - Hieronymus Fischer, Aug 06 2007
a(n) = ceiling(2*sqrt(2n+3)) - floor(2*sqrt(2n+2)) - 1. - Hieronymus Fischer, Aug 06 2007
From Franklin T. Adams-Watters, Jun 29 2009: (Start)
G.f.: (1/2 x^{-1/8}theta_2(0,x^{1/2}) - 1)/x, where theta_2 is a Jacobi theta function.
G.f. for triangle: Sum T(n,k) x^n y^k = 1/(1-x*y). Sum T(n,k) x^n y^k / n! = Sum T(n,k) x^n y^k / k! = exp(x*y). Sum T(n,k) x^n y^k / (n! k!) = I_0(2*sqrt(x*y)), where I is the modified Bessel function of the first kind. (End)
a(n) = A000007(m), where m=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Jan 11 2013
The row polynomials are p(n,x) = x^n = (-1)^n n!Lag(n,-n,x), the normalized, associated Laguerre polynomials of order -n. As the prototypical Appell sequence with e.g.f. exp(x*y), its raising operator is R = x and lowering operator, L = d/dx, i.e., R p(n,x) = p(n+1,x), and L p(n,x) = n * p(n-1,x). - Tom Copeland, May 10 2014
a(n) = A010054(n+1) if n >= 0. - Michael Somos, May 17 2014
a(n) = floor(sqrt(2*(n+1)+1/2)-1/2) - floor(sqrt(2*n+1/2)-1/2). - Mikael Aaltonen, Jan 18 2015
Characteristic function of A000096. - M. F. Hasler, Apr 12 2018
Sum_{k=1..n} a(k) ~ sqrt(2*n). - Amiram Eldar, Jan 13 2024
Comments