A023533 a(n) = 1 if n is of the form m(m+1)(m+2)/6, and 0 otherwise.
1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Links
- Danny Rorabaugh, Table of n, a(n) for n = 0..10000
- Index entries for characteristic functions.
Programs
-
Mathematica
With[{ms=Table[m(m+1)(m+2)/6,{m,0,20}]},Table[If[MemberQ[ms,n],1,0], {n,0,100}]] (* Harvey P. Dale, Jul 25 2011 *) a[n_]:=Boole[Binomial[Floor[(6n-1)^(1/3)]+2, 3] == n]; Array[a,99,0] (* Stefano Spezia, Sep 15 2024 after Michel Marcus, Jul 19 2022 *)
-
PARI
lista(nn) = {v = vector(nn); for (n=0, nn, i = 1+n*(n+1)*(n+2)/6; if (i > nn, break); v[i] = 1;); v;} \\ Michel Marcus, Mar 16 2015
-
PARI
a(n) = if(n==0, return(1)); my(t = sqrtnint(6*n-1, 3)); binomial(t+2, 3) == n; \\ Michel Marcus, Jul 19 2022; after A014306
-
Sage
# Generates an array with at least N terms. def A023533_list(N): A = [] for m in range(ceil((6*N)^(1/3))): A.extend([0]*(binomial(m+2, 3) - len(A)) + [1]) return A print(A023533_list(40)) # Danny Rorabaugh, Mar 16 2015
Formula
For n > 0, a(n) = floor(t(n+1) + 1/(3 * t(n+1)) - 1) - floor(t(n) + 1/(3 * t(n)) - 1), where t(n) = ( sqrt(243*n^2-1)/3^(3/2) + 3*n )^(1/3). - Mikael Aaltonen, Mar 28 2015; corrected by Michel Marcus, Jul 17 2022
Comments