cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023533 a(n) = 1 if n is of the form m(m+1)(m+2)/6, and 0 otherwise.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Clark Kimberling, Jun 14 1998

Keywords

Comments

a(n) is the characteristic function of tetrahedral numbers (A000292). - Mikael Aaltonen, Mar 28 2015

Crossrefs

Programs

  • Mathematica
    With[{ms=Table[m(m+1)(m+2)/6,{m,0,20}]},Table[If[MemberQ[ms,n],1,0], {n,0,100}]] (* Harvey P. Dale, Jul 25 2011 *)
    a[n_]:=Boole[Binomial[Floor[(6n-1)^(1/3)]+2, 3] == n]; Array[a,99,0] (* Stefano Spezia, Sep 15 2024 after Michel Marcus, Jul 19 2022 *)
  • PARI
    lista(nn) = {v = vector(nn); for (n=0, nn, i = 1+n*(n+1)*(n+2)/6; if (i > nn, break); v[i] = 1;); v;} \\ Michel Marcus, Mar 16 2015
    
  • PARI
    a(n) = if(n==0, return(1)); my(t = sqrtnint(6*n-1, 3)); binomial(t+2, 3) == n; \\ Michel Marcus, Jul 19 2022; after A014306
  • Sage
    # Generates an array with at least N terms.
    def A023533_list(N):
        A = []
        for m in range(ceil((6*N)^(1/3))):
            A.extend([0]*(binomial(m+2, 3) - len(A)) + [1])
        return A
    print(A023533_list(40))
    # Danny Rorabaugh, Mar 16 2015
    

Formula

a(A000292(n))=1; a(A145397(n))=0; a(n)=1-A014306(n). - Reinhard Zumkeller, Oct 14 2008
For n > 0, a(n) = floor(t(n+1) + 1/(3 * t(n+1)) - 1) - floor(t(n) + 1/(3 * t(n)) - 1), where t(n) = ( sqrt(243*n^2-1)/3^(3/2) + 3*n )^(1/3). - Mikael Aaltonen, Mar 28 2015; corrected by Michel Marcus, Jul 17 2022