cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023537 a(n) = Lucas(n+4) - (3*n+7).

Original entry on oeis.org

1, 5, 13, 28, 54, 98, 171, 291, 487, 806, 1324, 2164, 3525, 5729, 9297, 15072, 24418, 39542, 64015, 103615, 167691, 271370, 439128, 710568, 1149769, 1860413, 3010261, 4870756, 7881102, 12751946, 20633139, 33385179, 54018415, 87403694, 141422212, 228826012
Offset: 1

Views

Author

Keywords

Comments

Define a triangle with T(n, 1) = n*(n-1) + 1 and T(n, n) = n for n = 1, 2, 3, ... The interior terms T(r, c) = T(r - 1, c) + T(r - 2, c - 1); this triangle will give the sum of terms in row(n) = a(n). The rows begin 1; 3 2; 7 3 3; 13 6 5 4; 21 13 8 7 5 having row(n) sums 1, 5, 13, 28, 54. - J. M. Bergot, Feb 17 2013

References

  • Wolfdieter Lang in "Applications of Fibonacci Numbers", Vol. 7, p. 235, eds.: G. E. Bergum et al, Kluwer, 1998.

Crossrefs

Programs

  • GAP
    List([1..40], n-> Lucas(1, -1, n+4)[2] -(3*n+7) ); # G. C. Greubel, Jun 01 2019
    
  • Magma
    [Lucas(n+4) -(3*n+7): n in [1..40]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    with(combinat): L:=n->fibonacci(n+2)-fibonacci(n-2): seq(L(n),n=0..12): seq(L(n+4)-3*n-7,n=1..40); # Emeric Deutsch, Aug 08 2005
  • Mathematica
    Table[LucasL[n + 4] - (3n + 7), {n, 40}] (* Alonso del Arte, Feb 17 2013 *)
  • PARI
    Vec(x*(1+2*x)/((1-x-x^2)*(1-x)^2) + O(x^40)) \\ Colin Barker, Mar 11 2017
    
  • Sage
    [lucas_number2(n+4, 1, -1) -(3*n+7) for n in (1..40)] # G. C. Greubel, Jun 01 2019
    
  • Scala
    def lucas(n: BigInt): BigInt = {
      val zero = BigInt(0)
      def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match {
        case `zero` => a
        case _ => fibTail(n - 1, b, a + b)
      }
      fibTail(n, 2, 1)
    }
    (1 to 40).map(n => lucas(n + 4) - (3 * n + 7)) // Alonso del Arte, Oct 20 2019

Formula

Convolution of natural numbers with Lucas numbers A000204.
a(n) = A027960(n+1, n+3).
From Wolfdieter Lang: (Start)
a(n) = 7*(F(n+1) - 1) + 4*F(n) - 3*n; F(n) = A000045 (Fibonacci);
G.f.: x*(1 + 2*x)/((1-x)^2*(1 - x - x^2)). (End)
a(n) - a(n-1) = A101220(3, 1, n). - Ross La Haye, May 31 2006
a(n+1) - a(n) = A027961(n+1). - R. J. Mathar, Feb 21 2013
From Colin Barker, Mar 11 2017: (Start)
a(n) = -4 + (2^(-1 - n)*((1 - sqrt(5))^n*(-15 + 7*sqrt(5)) + (1 + sqrt(5))^n*(15 + 7*sqrt(5)))) / sqrt(5) - 3*(1+n).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n > 4. (End)
From G. C. Greubel, Jun 08 2025: (Start)
a(n) = a(n-1) + a(n-2) + 3*n - 2.
a(n) = Sum_{i=0..n-1} Sum_{j=0..i} A027960(i,j).
E.g.f.: exp(x/2)*( 7*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2) ) - (3*x+7)*exp(x). (End)

Extensions

More terms from Emeric Deutsch, Aug 08 2005