A023537 a(n) = Lucas(n+4) - (3*n+7).
1, 5, 13, 28, 54, 98, 171, 291, 487, 806, 1324, 2164, 3525, 5729, 9297, 15072, 24418, 39542, 64015, 103615, 167691, 271370, 439128, 710568, 1149769, 1860413, 3010261, 4870756, 7881102, 12751946, 20633139, 33385179, 54018415, 87403694, 141422212, 228826012
Offset: 1
References
- Wolfdieter Lang in "Applications of Fibonacci Numbers", Vol. 7, p. 235, eds.: G. E. Bergum et al, Kluwer, 1998.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,1).
Programs
-
GAP
List([1..40], n-> Lucas(1, -1, n+4)[2] -(3*n+7) ); # G. C. Greubel, Jun 01 2019
-
Magma
[Lucas(n+4) -(3*n+7): n in [1..40]]; // Vincenzo Librandi, Apr 16 2011
-
Maple
with(combinat): L:=n->fibonacci(n+2)-fibonacci(n-2): seq(L(n),n=0..12): seq(L(n+4)-3*n-7,n=1..40); # Emeric Deutsch, Aug 08 2005
-
Mathematica
Table[LucasL[n + 4] - (3n + 7), {n, 40}] (* Alonso del Arte, Feb 17 2013 *)
-
PARI
Vec(x*(1+2*x)/((1-x-x^2)*(1-x)^2) + O(x^40)) \\ Colin Barker, Mar 11 2017
-
Sage
[lucas_number2(n+4, 1, -1) -(3*n+7) for n in (1..40)] # G. C. Greubel, Jun 01 2019
-
Scala
def lucas(n: BigInt): BigInt = { val zero = BigInt(0) def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match { case `zero` => a case _ => fibTail(n - 1, b, a + b) } fibTail(n, 2, 1) } (1 to 40).map(n => lucas(n + 4) - (3 * n + 7)) // Alonso del Arte, Oct 20 2019
Formula
Convolution of natural numbers with Lucas numbers A000204.
a(n) = A027960(n+1, n+3).
From Wolfdieter Lang: (Start)
a(n) = 7*(F(n+1) - 1) + 4*F(n) - 3*n; F(n) = A000045 (Fibonacci);
G.f.: x*(1 + 2*x)/((1-x)^2*(1 - x - x^2)). (End)
a(n) - a(n-1) = A101220(3, 1, n). - Ross La Haye, May 31 2006
a(n+1) - a(n) = A027961(n+1). - R. J. Mathar, Feb 21 2013
From Colin Barker, Mar 11 2017: (Start)
a(n) = -4 + (2^(-1 - n)*((1 - sqrt(5))^n*(-15 + 7*sqrt(5)) + (1 + sqrt(5))^n*(15 + 7*sqrt(5)))) / sqrt(5) - 3*(1+n).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n > 4. (End)
From G. C. Greubel, Jun 08 2025: (Start)
a(n) = a(n-1) + a(n-2) + 3*n - 2.
a(n) = Sum_{i=0..n-1} Sum_{j=0..i} A027960(i,j).
E.g.f.: exp(x/2)*( 7*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2) ) - (3*x+7)*exp(x). (End)
Extensions
More terms from Emeric Deutsch, Aug 08 2005
Comments