A027962 Duplicate of A023537.
1, 5, 13, 28, 54, 98, 171, 291, 487, 806, 1324, 2164, 3525, 5729, 9297, 15072
Offset: 2
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
First few rows of the triangle are: 1; 5, 1; 13, 5, 1; 28, 13, 5, 1; 54, 28, 13, 5, 1; 98, 54, 28, 13, 5, 1; ...
Flat(List([1..12], n-> List([0..n-1], k-> Lucas(1, -1, n-k+4)[2] -3*n+3*k-7 ))); # G. C. Greubel, Jun 01 2019
[[Lucas(n-k+4) -(3*n-3*k+7): k in [0..n-1]]: n in [1..12]]; // G. C. Greubel, Jun 01 2019
Table[LucasL[n-k+4] -3*n+3*k-7, {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Jun 01 2019 *)
{T(n,k) = fibonacci(n-k+5) + fibonacci(n-k+3) -3*n +3*k - 7}; \\ G. C. Greubel, Jun 01 2019
[[lucas_number2(n-k+4, 1, -1) -3*n+3*k-7 for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Jun 01 2019
The first five polynomials and their reductions: 1 -> 1 1+x -> 1+x 2+x+x^2 -> 3+2x 6+2x+x^2+x^3 -> 8+5x 24+6x+2x^2+x^3+x^4 -> 29+13x, so that A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
A192744p := proc(n,x) option remember; if n = 0 then 1; else x*procname(n-1,x)+n! ; expand(%) ; end if; end proc: A192744 := proc(n) local p; p := A192744p(n,x) ; while degree(p,x) > 1 do p := algsubs(x^2=x+1,p) ; p := expand(p) ; end do: coeftayl(p,x=0,0) ; end proc: # R. J. Mathar, Dec 16 2015
q = x^2; s = x + 1; z = 40; p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!; Table[Expand[p[n, x]], {n, 0, 7}] reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}]; u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192744 *) u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192745 *)
a(1,3,3) = 6 because a(1,3,0) = 0, a(1,3,1) = 1, a(1,3,2) = 2 and 4*2 - 2*1 - 3*0 = 6.
A101220:= func< n | (&+[n^k*Fibonacci(n-k): k in [0..n]]) >; [A101220(n): n in [0..30]]; // G. C. Greubel, Jun 01 2025
Join[{0}, Table[Sum[Fibonacci[n-k]*n^k, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 03 2021 *)
a(n)=sum(k=0,n,fibonacci(n-k)*n^k) \\ Joerg Arndt, Jan 03 2021
def A101220(n): return sum(n^k*fibonacci(n-k) for k in range(n+1)) print([A101220(n) for n in range(31)]) # G. C. Greubel, Jun 01 2025
1 1, 3, 1 1, 3, 4, 4, 1 1, 3, 4, 7, 8, 5, 1 1, 3, 4, 7, 11, 15, 13, 6, 1 1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1 1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1 1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1
function T(n,k) // T = A027960 if k le n then return Lucas(k+1); elif k gt 2*n then return 0; else return T(n-1, k-2) + T(n-1, k-1); end if; end function; [T(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Jun 08 2025
T:=proc(n,k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1,k-2) + T(n-1,k-1):fi:end: for n from 0 to 6 do for k from 0 to 2*n do print(T(n,k));od:od: # Nathaniel Johnston, Apr 18 2011
(* First program *) t[, 0] = 1; t[, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 27 2013 *) (* Second program *) f[n_, k_]:= f[n,k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}]; A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n]; Table[A027960[n,k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Jun 08 2025 *)
T(r,n)=if(r<0||n>2*r,return(0)); if(n==0||n==2*r,return(1)); if(n==1,3,T(r-1,n-1)+T(r-1,n-2)) /* Ralf Stephan, May 04 2005 */
@CachedFunction def T(n, k): # T = A027960 if (k>2*n): return 0 elif (kG. C. Greubel, Jun 01 2019; Jun 08 2025
List([1..40], n-> Lucas(1, -1, n+2)[2] -3 ); # G. C. Greubel, Jun 01 2019
[Lucas(n+2)-3: n in [1..40]]; // Vincenzo Librandi, Apr 16 2011
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2]+3 od: seq(a[n],n=1..40); # Miklos Kristof, Mar 09 2005 with(combinat): seq(fibonacci(n)+fibonacci(n+2)-3, n=2..40); # Zerinvary Lajos, Jan 31 2008 g:=(1+z^2)/(1-z-z^2): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-3, n=3..40); # Zerinvary Lajos, Jan 09 2009
LucasL[Range[3, 40]] - 3 (* Alonso del Arte, Sep 26 2013 *)
vector(40, n, fibonacci(n+3) +fibonacci(n+1) -3) \\ G. C. Greubel, Dec 18 2017
first(n) = Vec(x*(1+2*x)/((1-x)*(1-x-x^2)) + O(x^(n+1))) \\ Iain Fox, Dec 19 2017
[lucas_number2(n+2, 1, -1) -3 for n in (1..40)] # G. C. Greubel, Jun 01 2019
List([0..30], n-> 2^(n+3) - Lucas(1,-1,n+4)[2]); # G. C. Greubel, Sep 26 2019
[2^(n+3) - Lucas(n+4): n in [0..30]]; // G. C. Greubel, Sep 26 2019
with(combinat); f:=fibonacci; seq(2^(n+3) - f(n+5) - f(n+3), n=0..30); # G. C. Greubel, Sep 26 2019
Table[2^(n+3) - LucasL[n+4], {n,0,30}] (* G. C. Greubel, Sep 26 2019 *)
vector(31, n, f=fibonacci; 2^(n+2) - f(n+4) - f(n+2)) \\ G. C. Greubel, Sep 26 2019
def A027974(n): return 2**(n+3) - lucas_number2(n+4,1,-1) [A027974(n) for n in range(31)] # G. C. Greubel, Sep 26 2019; Jun 08 2025
The array T(r,n) = L(n)^(r) begins: .....|n=0|n=1|.n=2|.n=3|.n=4.|.n=5.|..n=6.|.n=7..|..n=8..|..n=9..|.n=10..|.in.OEIS r=0..|.0.|.1.|..3.|..4.|...7.|..11.|...18.|...29.|....47.|....76.|...123.|.A000204 r=1..|.0.|.1.|..4.|..8.|..15.|..26.|...44.|...73.|...120.|...196.|...319.|.A027961 r=2..|.0.|.1.|..5.|.13.|..28.|..54.|...98.|..171.|...291.|...487.|...806.|.A023537 r=3..|.0.|.1.|..6.|.19.|..47.|.101.|..199.|..370.|...661.|..1148.|..1954.|.A027963 r=4..|.0.|.1.|..7.|.26.|..73.|.174.|..373.|..743.|..1404.|..2552.|..4506.|.A027964 r=5..|.0.|.1.|..8.|.34.|.107.|.281.|..654.|.1397.|..2801.|..5353.|..9859.|.A053298 r=6..|.0.|.1.|..9.|.43.|.150.|.431.|.1085.|.2482.|..5283.|.10636.|.20495.|.new r=7..|.0.|.1.|.10.|.53.|.203.|.634.|.1719.|.4201.|..9484.|.20120.|.40615.|.new r=8..|.0.|.1.|.11.|.64.|.267.|.901.|.2620.|.6821.|.16305.|.36425.|.77040.|.new r=9..|.0.|.1.|.12.|.76.|.343.|1244.|.3864.|10685.|.26990.|.63415.|140455.|.new For example, T(4,5) = L(5)^(4) = L(0)^(3) + L(1)^(3) + L(2)^(3) + L(3)^(3) + L(4)^(3) + L(5)^(3) = 0 + 1 + 6 + 19 + 47 + 101 = 174. - _Petros Hadjicostas_, Sep 03 2019
L:= proc(r, n) option remember; `if`(n=0, 0, `if`(r=0, `if`(n<3, 2*n-1, L(0, n-2)+L(0, n-1)), L(r-1, n)+L(r, n-1))) end: seq(seq(L(d-n, n), n=0..d), d=0..12); # Alois P. Heinz, Sep 03 2019
L[r_, n_] := L[r, n] = If[n == 0, 0, If[r == 0, If[n < 3, 2n-1, L[0, n-2] + L[0, n-1]], L[r-1, n] + L[r, n-1]]]; Table[L[d-n, n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Sep 26 2019, from Maple *)
List([1..50], n-> Lucas(1,-1,n+1)[2] +n-1) # G. C. Greubel, Jun 01 2019
[Lucas(n+1) +n-1: n in [1..50]]; // G. C. Greubel, Jun 01 2019
LinearRecurrence[{3,-2,-1,1}, {3,5,9,14}, 50] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2011, modified by G. C. Greubel, Jun 01 2019 *) Table[LucasL[n+1] +n-1, {n,1,50}] (* G. C. Greubel, Jun 01 2019 *)
{a(n) = fibonacci(n+2) + fibonacci(n) + n-1}; \\ G. C. Greubel, Jun 01 2019
[lucas_number2(n+1,1,-1) +n-1 for n in (1..50)] # G. C. Greubel, Jun 01 2019
List([1..40], n-> Lucas(1, -1, n+4)[2] -2*n-7 ); # G. C. Greubel, Jun 01 2019
[Lucas(n+4) - 2*n - 7 : n in [1..40]]; // G. C. Greubel, Jun 01 2019
LinearRecurrence[{3,-2,-1,1}, {2,7,16,32}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
Vec(x*(2-x)*(1+x)/((1-x)^2*(1-x-x^2)) + O(x^40)) \\ Colin Barker, Mar 11 2017
vector(40, n, fibonacci(n+5) + fibonacci(n+3) -2*n-7) \\ G. C. Greubel, Jun 01 2019
[lucas_number2(n+4,1,-1) -2*n-7 for n in (1..40)] # G. C. Greubel, Jun 01 2019
Comments