cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A027962 Duplicate of A023537.

Original entry on oeis.org

1, 5, 13, 28, 54, 98, 171, 291, 487, 806, 1324, 2164, 3525, 5729, 9297, 15072
Offset: 2

Views

Author

Keywords

A104793 Triangle T(n,k) = A023537(n-k), n >= 1, 0 <= k < n, read by rows.

Original entry on oeis.org

1, 5, 1, 13, 5, 1, 28, 13, 5, 1, 54, 28, 13, 5, 1, 98, 54, 28, 13, 5, 1, 171, 98, 54, 28, 13, 5, 1, 291, 171, 98, 54, 28, 13, 5, 1, 487, 291, 171, 98, 54, 28, 13, 5, 1, 806, 487, 291, 171, 98, 54, 28, 13, 5, 1, 1324, 806, 487, 291, 171, 98, 54, 28, 13, 5, 1
Offset: 1

Views

Author

Gary W. Adamson, Mar 26 2005

Keywords

Comments

Repeatedly writing the sequence A023537 backwards.

Examples

			First few rows of the triangle are:
   1;
   5,  1;
  13,  5,  1;
  28, 13,  5,  1;
  54, 28, 13,  5, 1;
  98, 54, 28, 13, 5, 1; ...
		

Crossrefs

Row sums are in A027963.
Cf. A104765.

Programs

  • GAP
    Flat(List([1..12], n-> List([0..n-1], k-> Lucas(1, -1, n-k+4)[2] -3*n+3*k-7 ))); # G. C. Greubel, Jun 01 2019
  • Magma
    [[Lucas(n-k+4) -(3*n-3*k+7): k in [0..n-1]]: n in [1..12]]; // G. C. Greubel, Jun 01 2019
    
  • Mathematica
    Table[LucasL[n-k+4] -3*n+3*k-7, {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Jun 01 2019 *)
  • PARI
    {T(n,k) = fibonacci(n-k+5) + fibonacci(n-k+3) -3*n +3*k - 7}; \\ G. C. Greubel, Jun 01 2019
    
  • Sage
    [[lucas_number2(n-k+4, 1, -1) -3*n+3*k-7 for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Jun 01 2019
    

Formula

From Ralf Stephan, Apr 05 2009: (Start)
T(n,k) = Lucas(n-k+4) - (3*n - 3*k + 7).
T(n,k) = A023537(A004736(n, k+1)). (End)

Extensions

Edited by Ralf Stephan, Apr 05 2009

A192744 Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.

Original entry on oeis.org

1, 1, 3, 8, 29, 133, 762, 5215, 41257, 369032, 3676209, 40333241, 483094250, 6271446691, 87705811341, 1314473334832, 21017294666173, 357096406209005, 6424799978507178, 122024623087820183, 2439706330834135361, 51219771117454755544
Offset: 0

Views

Author

Clark Kimberling, Jul 09 2011

Keywords

Comments

The titular polynomial is defined recursively by p(n,x)=x*p(n-1,x)+n! for n>0, where p(0,x)=1; see the Example. For an introduction to polynomial reduction, see A192232. The discussion at A192232 Comments continues here:
...
Let R(p,q,s) denote the "reduction of polynomial p by q->s" as defined at A192232. Suppose that q(x)=x^k for some k>0 and that s(x)=s(k,0)*x^(k-1)+s(k,1)*x^(k-2)+...+s(k,k-2)x+s(k,k-1).
...
First, we shall take p(x)=x^n, where n>=0; the results will be used to formulate R(p,q,s) for general p. Represent R(x^n,q,s) by
...
R(x^n)=s(n,0)*x^(k-1)+s(n,1)*x^(k-2)+...+s(n,k-2)*x+s(n,k-1).
...
Then each of the sequences u(n)=s(n,h), for h=0,1,...,k-1, satisfies this linear recurrence relation:
...
u(n)=s(k,0)*u(n-1)+s(k,1)*u(n-2)+...+s(k,k-2)*u(n-k-1)+s(k,k-1)*u(n-k), with initial values tabulated here:
...
n: ..s(n,0)...s(n,1)..s(n,2).......s(n,k-2)..s(n,k-1)
0: ....0........0.......0..............0.......1
1: ....0........0.......0..............1.......0
...
k-2: ..0........1.......0..............0.......0
k-1: ..0........0.......0..............0.......0
k: ..s(k,0)...s(k,1)..s(k,2).......s(k,k-2)..s(k,k-1)
...
That completes the formulation for p(x)=x^n. Turning to the general case, suppose that
...
p(n,x)=p(n,0)*x^n+p(n,1)*x^(n-1)+...+p(n,n-1)*x+p(n,n)
...
is a polynomial of degree n>=0. Then the reduction denoted by (R(p(n,x) by x^k -> s(x)) is the polynomial of degree k-1 given by the matrix product P*S*X, where P=(p(n,0)...p(n,1).........p(n-k)...p(n,n-k+1); X has all 0's except for main diagonal (x^(k-1), x^(k-2)...x,1); and S has
...
row 1: ... s(n,0) ... s(n,1) ...... s(n,k-2) . s(n,k-1)
row 2: ... s(n-1,0) . s(n-1,1) .... s(n-1,k-2) s(n-1,k-1)
...
row n-k+1: s(k,0).... s(k,1) ...... s(k,k-2) ..s(k,k-1)
row n-k+2: p(n,n-k+1) p(n,n-k+2) .. p(n,n-1) ..p(n,n)
*****
As a class of examples, suppose that (v(n)), for n>=0, is a sequence, that p(0,x)=1, and p(n,x)=v(n)+p(n-1,x) for n>0. If q(x)=x^2 and s(x)=x+1, and we write the reduction R(p(n,x)) as u1(n)*x+u2(n), then the sequences u1 and u2 are convolutions with the Fibonacci sequence, viz., let F=(0,1,1,2,3,5,8,...)=A000045 and let G=(1,0,1,1,2,3,5,8...); then u1=G**v and u2=F**v, where ** denotes convolution. Examples (with a few exceptions for initial terms):
...
If v(n)=n! then u1=A192744, u2=A192745.
If v(n)=n+1 then u1=A000071, u2=A001924.
If v(n)=2n then u1=A014739, u2=A027181.
If v(n)=2n+1 then u1=A001911, u2=A001891.
If v(n)=3n+1 then u1=A027961, u2=A023537.
If v(n)=3n+2 then u1=A192746, u2=A192747.
If v(n)=3n then u1=A154691, u2=A192748.
If v(n)=4n+1 then u1=A053311, u2=A192749.
If v(n)=4n+2 then u1=A192750, u2=A192751.
If v(n)=4n+3 then u1=A192752, u2=A192753.
If v(n)=4n then u1=A147728, u2=A023654.
If v(n)=5n+1 then u1=A192754, u2=A192755.
If v(n)=5n then u1=A166863, u2=A192756.
If v(n)=floor((n+1)tau) then u1=A192457, u2=A023611.
If v(n)=floor((n+2)/2) then u1=A052952, u2=A129696.
If v(n)=floor((n+3)/3) then u1=A004695, u2=A178982.
If v(n)=floor((n+4)/4) then u1=A080239, u2=A192758.
If v(n)=floor((n+5)/5) then u1=A124502, u2=A192759.
If v(n)=n+2 then u1=A001594, u2=A192760.
If v(n)=n+3 then u1=A022318, u2=A192761.
If v(n)=n+4 then u1=A022319, u2=A192762.
If v(n)=2^n then u1=A027934, u2=A008766.
If v(n)=3^n then u1=A106517, u2=A094688.

Examples

			The first five polynomials and their reductions:
1 -> 1
1+x -> 1+x
2+x+x^2 -> 3+2x
6+2x+x^2+x^3 -> 8+5x
24+6x+2x^2+x^3+x^4 -> 29+13x, so that
A192744=(1,1,3,8,29,...) and A192745=(0,1,2,5,13,...).
		

Crossrefs

Cf. A192232.

Programs

  • Maple
    A192744p := proc(n,x)
        option remember;
        if n = 0 then
            1;
        else
            x*procname(n-1,x)+n! ;
            expand(%) ;
        end if;
    end proc:
    A192744 := proc(n)
        local p;
        p := A192744p(n,x) ;
        while degree(p,x) > 1 do
            p := algsubs(x^2=x+1,p) ;
            p := expand(p) ;
        end do:
        coeftayl(p,x=0,0) ;
    end proc: # R. J. Mathar, Dec 16 2015
  • Mathematica
    q = x^2; s = x + 1; z = 40;
    p[0, n_] := 1; p[n_, x_] := x*p[n - 1, x] + n!;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] :=
    FixedPoint[(s PolynomialQuotient @@ #1 +
           PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
      (* A192744 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
      (* A192745 *)

Formula

G.f.: (1-x)/(1-x-x^2)/Q(0), where Q(k)= 1 - x*(k+1)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 20 2013
Conjecture: a(n) +(-n-2)*a(n-1) +2*(n-1)*a(n-2) +3*a(n-3) +(-n+2)*a(n-4)=0. - R. J. Mathar, May 04 2014
Conjecture: (-n+2)*a(n) +(n^2-n-1)*a(n-1) +(-n^2+3*n-3)*a(n-2) -(n-1)^2*a(n-3)
=0. - R. J. Mathar, Dec 16 2015

A101220 a(n) = Sum_{k=0..n} Fibonacci(n-k)*n^k.

Original entry on oeis.org

0, 1, 3, 14, 91, 820, 9650, 140601, 2440317, 49109632, 1123595495, 28792920872, 816742025772, 25402428294801, 859492240650847, 31427791175659690, 1234928473553777403, 51893300561135516404, 2322083099525697299278
Offset: 0

Views

Author

Ross La Haye, Dec 14 2004

Keywords

Comments

In what follows a(i,j,k) denotes a three-dimensional array, the terms a(n) are defined as a(n,n,n) in that array. - Joerg Arndt, Jan 03 2021
Previous name was: Three-dimensional array: a(i,j,k) = expansion of x*(1 + (i-j)*x)/((1-j*x)*(1-x-x^2)), read by a(n,n,n).
a(i,j,k) = the k-th value of the convolution of the Fibonacci numbers (A000045) with the powers of i = Sum_{m=0..k} a(i-1,j,m), both for i = j and i > 0; a(i,j,k) = a(i-1,j,k) + a(j,j,k-1), for i,k > 0; a(i,1,k) = Sum_{m=0..k} a(i-1,0,m), for i > 0. With F = Fibonacci and L = Lucas, then a(1,1,k) = F(k+2) - 1; a(2,1,k) = F(k+3) - 2; a(3,1,k) = L(k+2) - 3; a(4,1,k) = 4*F(k+1) + F(k) - 4; a(1,2,k) = 2^k - F(k+1); a(2,2,k) = 2^(k+1) - F(k+3); a(3,2,k) = 3(2^k - F(k+2)) + F(k); a(4,2,k) = 2^(k+2) - F(k+4) - F(k+2); a(1,3,k) = (3^k + L(k-1))/5, for k > 0; a(2,3,k) = (2 * 3^k - L(k)) /5, for k > 0; a(3,3,k) = (3^(k+1) - L(k+2))/5; a(4,3,k) = (4 * 3^k - L(k+2) - L(k+1))/5, etc..

Examples

			a(1,3,3) = 6 because a(1,3,0) = 0, a(1,3,1) = 1, a(1,3,2) = 2 and 4*2 - 2*1 - 3*0 = 6.
		

Crossrefs

a(0, j, k) = A000045(k).
a(1, 2, k+1) - a(1, 2, k) = A099036(k).
a(3, 2, k+1) - a(3, 2, k) = A104004(k).
a(4, 2, k+1) - a(4, 2, k) = A027973(k).
a(1, 3, k+1) - a(1, 3, k) = A099159(k).
a(i, 0, k) = A109754(i, k).
a(i, i+1, 3) = A002522(i+1).
a(i, i+1, 4) = A071568(i+1).
a(2^i-2, 0, k+1) = A118654(i, k), for i > 0.
Sequences of the form a(n, 0, k): A000045(k+1) (n=1), A000032(k) (n=2), A000285(k-1) (n=3), A022095(k-1) (n=4), A022096(k-1) (n=5), A022097(k-1) (n=6), A022098(k-1) (n=7), A022099(k-1) (n=8), A022100(k-1) (n=9), A022101(k-1) (n=10), A022102(k-1) (n=11), A022103(k-1) (n=12), A022104(k-1) (n=13), A022105(k-1) (n=14), A022106(k-1) (n=15), A022107(k-1) (n=16), A022108(k-1) (n=17), A022109(k-1) (n=18), A022110(k-1) (n=19), A088209(k-2) (n=k-2), A007502(k) (n=k-1), A094588(k) (n=k).
Sequences of the form a(1, n, k): A000071(k+2) (n=1), A027934(k-1) (n=2), A098703(k) (n=3).
Sequences of the form a(2, n, k): A001911(k) (n=1), A008466(k+1) (n=2), A106517(k-1) (n=3).
Sequences of the form a(3, n, k): A027961(k) (n=1), A094688(k) (n=3).
Sequences of the form a(4, n, k): A053311(k-1) (n=1), A027974(k-1) (n=2).

Programs

  • Magma
    A101220:= func< n | (&+[n^k*Fibonacci(n-k): k in [0..n]]) >;
    [A101220(n): n in [0..30]]; // G. C. Greubel, Jun 01 2025
    
  • Mathematica
    Join[{0}, Table[Sum[Fibonacci[n-k]*n^k, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 03 2021 *)
  • PARI
    a(n)=sum(k=0,n,fibonacci(n-k)*n^k) \\ Joerg Arndt, Jan 03 2021
    
  • SageMath
    def A101220(n): return sum(n^k*fibonacci(n-k) for k in range(n+1))
    print([A101220(n) for n in range(31)]) # G. C. Greubel, Jun 01 2025

Formula

a(i, j, 0) = 0, a(i, j, 1) = 1, a(i, j, 2) = i+1; a(i, j, k) = ((j+1)*a(i, j, k-1)) - ((j-1)*a(i, j, k-2)) - (j*a(i, j, k-3)), for k > 2.
a(i, j, k) = Fibonacci(k) + i*a(j, j, k-1), for i, k > 0.
a(i, j, k) = (Phi^k - (-Phi)^-k + i(((j^k - Phi^k) / (j - Phi)) - ((j^k - (-Phi)^-k) / (j - (-Phi)^-1)))) / sqrt(5), where Phi denotes the golden mean/ratio (A001622).
i^k = a(i-1, i, k) + a(i-2, i, k+1).
A104161(k) = Sum_{m=0..k} a(k-m, 0, m).
a(i, j, 0) = 0, a(i, j, 1) = 1, a(i, j, 2) = i+1, a(i, j, 3) = i*(j+1) + 2; a(i, j, k) = (j+2)*a(i, j, k-1) - 2*j*a(i, j, k-2) - a(i, j, k-3) + j*a(i, j, k-4), for k > 3. a(i, j, 0) = 0, a(i, j, 1) = 1; a(i, j, k) = a(i, j, k-1) + a(i, j, k-2) + i * j^(k-2), for k > 1.
G.f.: x*(1 + (i-j)*x)/((1-j*x)*(1-x-x^2)).
a(n, n, n) = Sum_{k=0..n} Fibonacci(n-k) * n^k. - Ross La Haye, Jan 14 2006
Sum_{m=0..k} binomial(k,m)*(i-1)^m = a(i-1,i,k) + a(i-2,i,k+1), for i > 1. - Ross La Haye, May 29 2006
From Ross La Haye, Jun 03 2006: (Start)
a(3, 3, k+1) - a(3, 3, k) = A106517(k).
a(1, 1, k) = A001924(k) - A001924(k-1), for k > 0.
a(2, 1, k) = A001891(k) - A001891(k-1), for k > 0.
a(3, 1, k) = A023537(k) - A023537(k-1), for k > 0.
Sum_{j=0..i+1} a(i-j+1, 0, j) - Sum_{j=0..i} a(i-j, 0, j) = A001595(i). (End)
a(i,j,k) = a(j,j,k) + (i-j)*a(j,j,k-1), for k > 0.
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jan 03 2021

Extensions

New name from Joerg Arndt, Jan 03 2021

A027960 'Lucas array': triangular array T read by rows.

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 4, 4, 1, 1, 3, 4, 7, 8, 5, 1, 1, 3, 4, 7, 11, 15, 13, 6, 1, 1, 3, 4, 7, 11, 18, 26, 28, 19, 7, 1, 1, 3, 4, 7, 11, 18, 29, 44, 54, 47, 26, 8, 1, 1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1, 1, 3, 4, 7, 11, 18, 29, 47, 76, 120, 171, 199, 174, 107, 43, 10, 1
Offset: 0

Views

Author

Keywords

Comments

The k-th row contains 2k+1 numbers.
Columns in the right half consist of convolutions of the Lucas numbers with the natural numbers.
T(n,k) = number of strings s(0),...,s(n) such that s(n)=n-k. s(0) in {0,1,2}, s(1)=1 if s(0) in {1,2}, s(1) in {0,1,2} if s(0)=0 and for 1 <= i <= n, s(i) = s(i-1)+d, with d in {0,2} if s(i)=2i, in {0,1,2} if s(i)=2i-1, in {0,1} if 0 <= s(i) <= 2i-2.

Examples

			                           1
                       1,  3,  1
                   1,  3,  4,  4,  1
               1,  3,  4,  7,  8,  5,   1
           1,  3,  4,  7, 11, 15, 13,   6,  1
        1, 3,  4,  7, 11, 18, 26, 28,  19,  7,  1
     1, 3, 4,  7, 11, 18, 29, 44, 54,  47, 26,  8, 1
  1, 3, 4, 7, 11, 18, 29, 47, 73, 98, 101, 73, 34, 9, 1
		

Crossrefs

Central column is the Lucas numbers without initial 2: A000204.
Columns in the right half include A027961, A027962, A027963, A027964, A053298.
Bisection triangles are in A026998 and A027011.
Row sums: A036563, A153881 (alternating sign).
Diagonals of the form T(n, 2*n-p): A000012 (p=0), A000027 (p=1), A034856 (p=2), A027965 (p=3), A027966 (p=4), A027967 (p=5), A027968 (p=6), A027969 (p=7), A027970 (p=8), A027971 (p=9), A027972 (p=10).
Diagonals of the form T(n, n+p): A000032 (p=0), A027961 (p=1), A023537 (p=2), A027963 (p=3), A027964 (p=4), A053298 (p=5), A027002 U A027018 (p=6), A027007 U A027014 (p=7), A027003 U A027019 (p=8).

Programs

  • Magma
    function T(n,k) // T = A027960
          if k le n then return Lucas(k+1);
          elif k gt 2*n then return 0;
          else return T(n-1, k-2) + T(n-1, k-1);
          end if;
    end function;
    [T(n,k): k in [0..2*n], n in [0..12]]; // G. C. Greubel, Jun 08 2025
  • Maple
    T:=proc(n,k)option remember:if(k=0 or k=2*n)then return 1:elif(k=1)then return 3:else return T(n-1,k-2) + T(n-1,k-1):fi:end:
    for n from 0 to 6 do for k from 0 to 2*n do print(T(n,k));od:od: # Nathaniel Johnston, Apr 18 2011
  • Mathematica
    (* First program *)
    t[, 0] = 1; t[, 1] = 3; t[n_, k_] /; (k == 2*n) = 1; t[n_, k_] := t[n, k] = t[n-1, k-2] + t[n-1, k-1]; Table[t[n, k], {n, 0, 8}, {k, 0, 2*n}] // Flatten (* Jean-François Alcover, Dec 27 2013 *)
    (* Second program *)
    f[n_, k_]:= f[n,k]= Sum[Binomial[2*n-k+j,j]*LucasL[2*(k-n-j)], {j,0,k-n-1}];
    A027960[n_, k_]:= LucasL[k+1] - f[n,k]*Boole[k>n];
    Table[A027960[n,k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Jun 08 2025 *)
  • PARI
    T(r,n)=if(r<0||n>2*r,return(0)); if(n==0||n==2*r,return(1)); if(n==1,3,T(r-1,n-1)+T(r-1,n-2)) /* Ralf Stephan, May 04 2005 */
    
  • SageMath
    @CachedFunction
    def T(n, k): # T = A027960
        if (k>2*n): return 0
        elif (kG. C. Greubel, Jun 01 2019; Jun 08 2025
    

Formula

T(n, k) = Lucas(k+1) for k <= n, otherwise the (2n-k)th coefficient of the power series for (1+2*x)/{(1-x-x^2)*(1-x)^(k-n)}.
Recurrence: T(n, 0)=T(n, 2n)=1 for n >= 0; T(n, 1)=3 for n >= 1; and for n >= 2, T(n, k) = T(n-1, k-2) + T(n-1, k-1) for 2 <= k <= 2*n-1.
From G. C. Greubel, Jun 08 2025: (Start)
T(n, k) = A000032(k+1) - f(n, k)*[k > n], where f(n, k) = Sum_{j=0..k-n-1} binomial(2*n -k+j, j)*A000032(2*(k-n-j)).
Sum_{k=0..A004396(n+1)} T(n-k, k) = A027975(n).
Sum_{k=0..n} T(n, k) = A027961(n).
Sum_{k=0..2*n} T(n, k) = A168616(n+2) + 2.
Sum_{k=n+1..2*n} (-1)^k*T(n, k) = A075193(n-1), n >= 1. (End)

Extensions

Edited by Ralf Stephan, May 04 2005

A027961 a(n) = Lucas(n+2) - 3.

Original entry on oeis.org

1, 4, 8, 15, 26, 44, 73, 120, 196, 319, 518, 840, 1361, 2204, 3568, 5775, 9346, 15124, 24473, 39600, 64076, 103679, 167758, 271440, 439201, 710644, 1149848, 1860495, 3010346, 4870844, 7881193, 12752040, 20633236, 33385279, 54018518
Offset: 1

Views

Author

Keywords

Comments

Sum of the first n Lucas numbers, that is, A000204(1) to A000204(n). - T. D. Noe, Oct 10 2005

Crossrefs

T(n, n+1), T given by A027960.

Programs

  • GAP
    List([1..40], n-> Lucas(1, -1, n+2)[2] -3 ); # G. C. Greubel, Jun 01 2019
  • Magma
    [Lucas(n+2)-3: n in [1..40]]; // Vincenzo Librandi, Apr 16 2011
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+a[n-2]+3 od: seq(a[n],n=1..40); # Miklos Kristof, Mar 09 2005
    with(combinat): seq(fibonacci(n)+fibonacci(n+2)-3, n=2..40); # Zerinvary Lajos, Jan 31 2008
    g:=(1+z^2)/(1-z-z^2): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)-3, n=3..40); # Zerinvary Lajos, Jan 09 2009
  • Mathematica
    LucasL[Range[3, 40]] - 3 (* Alonso del Arte, Sep 26 2013 *)
  • PARI
    vector(40, n, fibonacci(n+3) +fibonacci(n+1) -3) \\ G. C. Greubel, Dec 18 2017
    
  • PARI
    first(n) = Vec(x*(1+2*x)/((1-x)*(1-x-x^2)) + O(x^(n+1))) \\ Iain Fox, Dec 19 2017
    
  • Sage
    [lucas_number2(n+2, 1, -1) -3 for n in (1..40)] # G. C. Greubel, Jun 01 2019
    

Formula

a(0) = 0, a(1) = 1, a(n) = a(n-1) + a(n-2) + 3.
a(n) = A000204(n+2) - 3 = A000045(2n+4)/A000045(n+2) - 3. - Benoit Cloitre, Jan 05 2003
G.f.: x*(1+2*x)/((1-x)*(1-x-x^2)). Differences of A023537. - Ralf Stephan, Feb 07 2004
a(n) = A101220(3, 1, n). - Ross La Haye, Jan 28 2005
a(n) = F(n) + F(n+2) - 3, n >= 2, where F(n) is the n-th Fibonacci number. - Zerinvary Lajos, Jan 31 2008
a(n) = Sum_{k=1..n} ((-1/phi)^k + (phi)^k) where phi = 1/2+1/2*sqrt(5). - Dimitri Papadopoulos, Jan 07 2016
a(n) = 2*a(n-1)-a(n-3) for n>3. - Wesley Ivan Hurt, Jan 07 2016

A027974 a(n) = Sum_{k=1..n+1} A027960(n+1, n+1+k).

Original entry on oeis.org

1, 5, 14, 35, 81, 180, 389, 825, 1726, 3575, 7349, 15020, 30561, 61965, 125294, 252795, 509161, 1024100, 2057549, 4130225, 8284926, 16609455, 33282989, 66669660, 133507081, 267285605, 535010414, 1070731475, 2142612801, 4287086100, 8577182549, 17159235945
Offset: 0

Views

Author

Keywords

Comments

The former name, a(n) = Sum_{i=0..n} Sum_{j=0..i} T(i,j), T given by A027960, was in error with the data given. [This double summation gives A023537(n+1), or A027960(n+2, n+4) for n >= 0]. - G. C. Greubel, Jun 08 2025

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n+3) - Lucas(1,-1,n+4)[2]); # G. C. Greubel, Sep 26 2019
  • Magma
    [2^(n+3) - Lucas(n+4): n in [0..30]]; // G. C. Greubel, Sep 26 2019
    
  • Maple
    with(combinat); f:=fibonacci; seq(2^(n+3) - f(n+5) - f(n+3), n=0..30); # G. C. Greubel, Sep 26 2019
  • Mathematica
    Table[2^(n+3) - LucasL[n+4], {n,0,30}] (* G. C. Greubel, Sep 26 2019 *)
  • PARI
    vector(31, n, f=fibonacci; 2^(n+2) - f(n+4) - f(n+2)) \\ G. C. Greubel, Sep 26 2019
    
  • SageMath
    def A027974(n): return 2**(n+3) - lucas_number2(n+4,1,-1)
    [A027974(n) for n in range(31)] # G. C. Greubel, Sep 26 2019; Jun 08 2025
    

Formula

a(n) = 2^(n+3) - Fibonacci(n+5) - Fibonacci(n+3).
a(n) = A101220(4, 2, n+1).
G.f.: (1+2*x)/((1-2*x)*(1-x-x^2)). - R. J. Mathar, Sep 22 2008
a(n) = 2*a(n-1) + A000032(n+1). - David A. Corneth, Apr 16 2015
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3). - Colin Barker, Feb 17 2016
From G. C. Greubel, Jun 08 2025: (Start)
a(n) = 2^(n+3) - A000032(n+4).
E.g.f.: 8*exp(2*x) - exp(x/2)*( 7*cosh(sqrt(5)*x/2) + 3*sqrt(5)*sinh(sqrt(5)*x/2) ). (End)

A137176 Hyperlucas number array T(r,n) = L(n)^(r), read by ascending antidiagonals (r >= 0, n >= 0).

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 4, 0, 1, 5, 8, 7, 0, 1, 6, 13, 15, 11, 0, 1, 7, 19, 28, 26, 18, 0, 1, 8, 26, 47, 54, 44, 29, 0, 1, 9, 34, 73, 101, 98, 73, 47, 0, 1, 10, 43, 107, 174, 199, 171, 120, 76, 0, 1, 11, 53, 150, 281, 373, 370, 291, 196, 123
Offset: 0

Views

Author

Jonathan Vos Post, Apr 04 2008

Keywords

Comments

In Theorem 17, Dil and Mezo (2008) connect the hyperlucas numbers (this array) with the incomplete Lucas numbers (A324242). - Petros Hadjicostas, Sep 03 2019

Examples

			The array T(r,n) = L(n)^(r) begins:
.....|n=0|n=1|.n=2|.n=3|.n=4.|.n=5.|..n=6.|.n=7..|..n=8..|..n=9..|.n=10..|.in.OEIS
r=0..|.0.|.1.|..3.|..4.|...7.|..11.|...18.|...29.|....47.|....76.|...123.|.A000204
r=1..|.0.|.1.|..4.|..8.|..15.|..26.|...44.|...73.|...120.|...196.|...319.|.A027961
r=2..|.0.|.1.|..5.|.13.|..28.|..54.|...98.|..171.|...291.|...487.|...806.|.A023537
r=3..|.0.|.1.|..6.|.19.|..47.|.101.|..199.|..370.|...661.|..1148.|..1954.|.A027963
r=4..|.0.|.1.|..7.|.26.|..73.|.174.|..373.|..743.|..1404.|..2552.|..4506.|.A027964
r=5..|.0.|.1.|..8.|.34.|.107.|.281.|..654.|.1397.|..2801.|..5353.|..9859.|.A053298
r=6..|.0.|.1.|..9.|.43.|.150.|.431.|.1085.|.2482.|..5283.|.10636.|.20495.|.new
r=7..|.0.|.1.|.10.|.53.|.203.|.634.|.1719.|.4201.|..9484.|.20120.|.40615.|.new
r=8..|.0.|.1.|.11.|.64.|.267.|.901.|.2620.|.6821.|.16305.|.36425.|.77040.|.new
r=9..|.0.|.1.|.12.|.76.|.343.|1244.|.3864.|10685.|.26990.|.63415.|140455.|.new
For example, T(4,5) = L(5)^(4) = L(0)^(3) + L(1)^(3) + L(2)^(3) + L(3)^(3) + L(4)^(3) + L(5)^(3) = 0 + 1 + 6 + 19 + 47 + 101 = 174. - _Petros Hadjicostas_, Sep 03 2019
		

Crossrefs

Cf. A038730, A038792, and A134511 for incomplete Fibonacci sequences, and A324242 for incomplete Lucas sequences.

Programs

  • Maple
    L:= proc(r, n) option remember; `if`(n=0, 0, `if`(r=0,
          `if`(n<3, 2*n-1, L(0, n-2)+L(0, n-1)), L(r-1, n)+L(r, n-1)))
        end:
    seq(seq(L(d-n, n), n=0..d), d=0..12);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    L[r_, n_] := L[r, n] = If[n == 0, 0, If[r == 0, If[n < 3, 2n-1, L[0, n-2] + L[0, n-1]], L[r-1, n] + L[r, n-1]]];
    Table[L[d-n, n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Sep 26 2019, from Maple *)

Formula

T(r,n) = L(n)^(r) = Apply partial sum operator r times to Lucas numbers A000204.
From Petros Hadjicostas, Sep 03 2019: (Start)
T(r, n) = L(n)^(r) = Sum_{k = 0..n} L(k)^(r-1) for r >= 1, with T(0,n) = L(n)^(0) = L(n) = A000204(n), T(r,0) = L(0)^(r) = 0, and T(r,1) = L(1)^(r) = 1. (See Definition 13 in Dil and Mezo (2008).)
G.f. for row r: Sum_{n >= 0} L(n)^(r)*t^n = t * (1+2*t)/((1-t-t^2) * (1-t)^r). (Corrected from Proposition 14 in Dil and Mezo (2008).)
(End)

A033818 Convolution of natural numbers n >= 1 with Lucas numbers L(k) for k >= -2.

Original entry on oeis.org

3, 5, 9, 14, 22, 34, 53, 83, 131, 208, 332, 532, 855, 1377, 2221, 3586, 5794, 9366, 15145, 24495, 39623, 64100, 103704, 167784, 271467, 439229, 710673, 1149878, 1860526, 3010378, 4870877, 7881227, 12752075, 20633272, 33385316, 54018556, 87403839, 141422361, 228826165, 370248490
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = L(1)*(F(n+1) - 1) + L(0)*F(n) - L(-1)*n, F(n): Fibonacci (A000045), L(n): Lucas (A000032) with L(-n) = (-1)^n*L(n).
G.f.: x*(3-4*x)/((1-x-x^2)*(1-x)^2).
a(n) = Lucas(n+1) + n - 1. - G. C. Greubel, Jun 01 2019

Extensions

Terms a(31) onward added by G. C. Greubel, Jun 01 2019

A023550 Convolution of natural numbers >= 2 and (F(2), F(3), F(4), ...).

Original entry on oeis.org

2, 7, 16, 32, 59, 104, 178, 299, 496, 816, 1335, 2176, 3538, 5743, 9312, 15088, 24435, 39560, 64034, 103635, 167712, 271392, 439151, 710592, 1149794, 1860439, 3010288, 4870784, 7881131, 12751976, 20633170, 33385211, 54018448, 87403728, 141422247, 228826048
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..40], n-> Lucas(1, -1, n+4)[2] -2*n-7 ); # G. C. Greubel, Jun 01 2019
  • Magma
    [Lucas(n+4) - 2*n - 7 : n in [1..40]]; // G. C. Greubel, Jun 01 2019
    
  • Mathematica
    LinearRecurrence[{3,-2,-1,1}, {2,7,16,32}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 11 2012 *)
  • PARI
    Vec(x*(2-x)*(1+x)/((1-x)^2*(1-x-x^2)) + O(x^40)) \\ Colin Barker, Mar 11 2017
    
  • PARI
    vector(40, n, fibonacci(n+5) + fibonacci(n+3) -2*n-7) \\ G. C. Greubel, Jun 01 2019
    
  • Sage
    [lucas_number2(n+4,1,-1) -2*n-7 for n in (1..40)] # G. C. Greubel, Jun 01 2019
    

Formula

a(n) = A023537(n) + 2*n.
From Colin Barker, Mar 11 2017: (Start)
G.f.: x*(2-x)*(1+x) / ((1-x)^2*(1-x-x^2)).
a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-15+7*sqrt(5)) + (1+sqrt(5))^n*(15+7*sqrt(5)))) / sqrt(5) - 2*n - 7.
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>4.
(End)
a(n) = Lucas(n+4) - 2*n - 7. - G. C. Greubel, Jun 01 2019
Showing 1-10 of 12 results. Next