cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023855 a(n) = 1*(n) + 2*(n-1) + 3*(n-2) + ... + (n+1-k)*k, where k = floor((n+1)/2).

Original entry on oeis.org

1, 2, 7, 10, 22, 28, 50, 60, 95, 110, 161, 182, 252, 280, 372, 408, 525, 570, 715, 770, 946, 1012, 1222, 1300, 1547, 1638, 1925, 2030, 2360, 2480, 2856, 2992, 3417, 3570, 4047, 4218, 4750, 4940, 5530, 5740, 6391, 6622, 7337, 7590, 8372, 8648, 9500, 9800, 10725, 11050
Offset: 1

Views

Author

Keywords

Comments

Given a rectangle of perimeter 2*n one can form rectangles having this perimeter for a number of different rectangles or squares depending on how large 2*n is. The sequence lists the total areas of all such rectangles for each 2*n. - J. M. Bergot, Sep 14 2011
Antidiagonal sums of triangle A075362. - L. Edson Jeffery, Jan 20 2012

Crossrefs

Programs

  • Haskell
    a023855 n = sum $ zipWith (*) [1 .. div (n+1) 2] [n, n-1 ..]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Magma
    [(4*n^3 +15*n^2 +14*n +3 -3*(n+1)^2*(-1)^n)/48: n in [1..60]]; // G. C. Greubel, Jul 12 2022
    
  • Maple
    seq(-(1/3)*floor((k+1)/2)^3 + (k/2)*floor((k+1)/2)^2 + ((3*k+2)/6)*floor((k+1)/2), k=1..100); # Wesley Ivan Hurt, Sep 18 2013
  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1}, {1,2,7,10,22,28,50}, 60] (* Vincenzo Librandi, Jan 23 2012 *)
    Table[-Ceiling[n/2] (Ceiling[n/2] + 1) (2 Ceiling[n/2] - 3 n - 2)/6, {n, 100}] (* Wesley Ivan Hurt, Sep 20 2013 *)
  • PARI
    a(n)=if(n%2, (n+1)*(n+3)*(2*n+1)/24, n*(n+1)*(n+2)/12)
    
  • PARI
    my(x='x+O('x^99)); Vec(x*(1+x+2*x^2)/((1-x)^4*(1+x)^3)) \\ Altug Alkan, Mar 03 2018
    
  • SageMath
    [(4*n^3 +15*n^2 +14*n +3 -3*(n+1)^2*(-1)^n)/48 for n in (1..60)] # G. C. Greubel, Jul 12 2022

Formula

a(n) = (n+1)*(n+3)*(2*n+1)/24 if n is odd, or n*(n+1)*(n+2)/12 if n is even.
G.f.: x*(1+x+2*x^2)/((1-x)^4*(1+x)^3). - Ralf Stephan, Apr 28 2004
a(n) = Sum_{i=1..ceiling(n/2)} i*(n-i+1) = -ceiling(n/2)*(ceiling(n/2)+1)*(2*ceiling(n/2)-3n-2)/6. - Wesley Ivan Hurt, Sep 19 2013
a(n) = (4*n^3 + 15*n^2 + 14*n + 3 - 3*(n+1)^2*(-1)^n)/48. - Luce ETIENNE, Oct 22 2014
a(n) = (A000292(n) + (n mod 2)*(ceiling(n/2))^2)/2. - Luc Rousseau, Feb 25 2018
E.g.f.: (1/24)*( x*(21+12*x+2*x^2)*cosh(x) + (3+12*x+15*x^2+2*x^3)*sinh(x) ). - G. C. Greubel, Jul 12 2022

Extensions

Formula, program, and slight revision by Charles R Greathouse IV, Feb 23 2010