cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A023857 a(n) = 1*(n+3-1) + 2*(n+3-2) + .... + k*(n+3-k), where k=floor((n+1)/2).

Original entry on oeis.org

3, 4, 13, 16, 34, 40, 70, 80, 125, 140, 203, 224, 308, 336, 444, 480, 615, 660, 825, 880, 1078, 1144, 1378, 1456, 1729, 1820, 2135, 2240, 2600, 2720, 3128, 3264, 3723, 3876, 4389, 4560, 5130, 5320, 5950, 6160, 6853, 7084, 7843, 8096, 8924, 9200, 10100, 10400, 11375, 11700
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..60], n-> (4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48) # G. C. Greubel, Jun 12 2019
  • Magma
    [(4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48: n in [1..60]]; // G. C. Greubel, Jun 12 2019
    
  • Maple
    seq(sum(i*(n-i+3), i=1..ceil(n/2)), n=1..60); # Wesley Ivan Hurt, Sep 20 2013
  • Mathematica
    Table[-Ceiling[n/2]*(Ceiling[n/2]+1)*(2*Ceiling[n/2]-3n-8)/6, {n,60}] (* Wesley Ivan Hurt, Sep 20 2013 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{3,4,13,16,34,40,70},60] (* Harvey P. Dale, Feb 13 2018 *)
  • PARI
    a(n) = (4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48; \\ G. C. Greubel, Jun 12 2019
    
  • Sage
    [(4*n^3 +27*n^2 +50*n +21 -3*(n^2+6*n+7)*(-1)^n)/48 for n in (1..60)] # G. C. Greubel, Jun 12 2019
    

Formula

a(n) = Sum_{i=1..ceiling(n/2)} i*(n-i+3) = -ceiling(n/2)*(ceiling(n/2)+1)*(2*ceiling(n/2) - 3*n - 8)/6. - Wesley Ivan Hurt, Sep 20 2013
G.f. x*(3+x) / ( (1+x)^3*(1-x)^4 ). - R. J. Mathar, Sep 25 2013
a(n) = 3*A058187(n-1) + A058187(n-2). - R. J. Mathar, Sep 25 2013
a(n) = (4*n^3 + 27*n^2 + 50*n + 21 - 3*(n^2 + 6*n + 7)*(-1)^n)/48. - Luce ETIENNE, Nov 21 2014
E.g.f.: (x*(51 + 18*x + 2*x^2)*cosh(x) + (21 + 30*x + 21*x^2 + 2*x^3)*sinh(x))/24. - G. C. Greubel, Jun 12 2019

Extensions

Title simplified by Sean A. Irvine, Jun 12 2019