cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123867 a(n) = n^10 - 1.

Original entry on oeis.org

0, 1023, 59048, 1048575, 9765624, 60466175, 282475248, 1073741823, 3486784400, 9999999999, 25937424600, 61917364223, 137858491848, 289254654975, 576650390624, 1099511627775, 2015993900448, 3570467226623, 6131066257800, 10239999999999, 16679880978200
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 11 = 0 iff n mod 11 > 0; a(A008593(n)) = 10.

Crossrefs

Programs

Formula

From G. C. Greubel, Aug 08 2019: (Start)
G.f.: x^2*(1023 + 47795*x + 455312*x^2 + 1310144*x^3 + 1310606*x^4 + 454982*x^5 + 47960*x^6 + 968*x^7 + 11*x^8 + x^9)/(1-x)^11.
E.g.f.: 1 +(-1 + x + 511*x^2 + 9330*x^3 + 34105*x^4 + 42525*x^5 + 22827*x^6 + 5880*x^7 + 750*x^8 + 45*x^9 + x^10)*exp(x). (End)

A258837 a(n) = 1 - n^2.

Original entry on oeis.org

1, 0, -3, -8, -15, -24, -35, -48, -63, -80, -99, -120, -143, -168, -195, -224, -255, -288, -323, -360, -399, -440, -483, -528, -575, -624, -675, -728, -783, -840, -899, -960, -1023, -1088, -1155, -1224, -1295, -1368, -1443, -1520, -1599, -1680, -1763, -1848
Offset: 0

Views

Author

Vincenzo Librandi, Jun 12 2015

Keywords

Crossrefs

Sequences of the type 1-n^k: A024000 (k=1), this sequence (k=2), A024001 (k=3), A024002 (k=4), A024003 (k=5), A024004 (k=6), A024005 (k=7), A024006 (k=8), A024007 (k=9), A024008 (k=10), A024009 (k=11), A024010 (k=12).

Programs

  • Magma
    [1-n^2: n in [0..50]];
    
  • Magma
    I:=[1,0,-3]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    Table[1 - n^2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 0, -3}, 50]
  • PARI
    my(x='x+O('x^50)); Vec((1-3*x)/(1-x)^3) \\ G. C. Greubel, May 11 2017

Formula

G.f.: (1-3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = -A067998(n+1). - Joerg Arndt, Jun 13 2015
a(n) = (-1)^n*A131386(n+1). - Bruno Berselli, Jun 15 2015
E.g.f.: (1 - x - x^2)*exp(x). - G. C. Greubel, May 11 2017
Sum_{n>=2} 1/a(n) = -3/4. - Amiram Eldar, Feb 17 2023
Showing 1-2 of 2 results.