A024382 a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 4.
1, 6, 59, 812, 14389, 312114, 8011695, 237560280, 7990901865, 300659985630, 12511934225955, 570616907588100, 28301322505722525, 1516683700464669450, 87336792132539066775, 5378036128829898836400, 352652348707389385916625, 24533212082483855129037750
Offset: 0
Keywords
Examples
For n = 1 we have a(1) = 1*5*(1/1 + 1/5) = 6. For n = 2 we have a(2) = 1*5*9*(1/1 + 1/5 + 1/9) = 59. For n = 3 we have a(3) = 1*5*9*13*(1/1 + 1/5 + 1/9 + 1/13) = 812. - _Gheorghe Coserea_, Dec 24 2015
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..350
Crossrefs
Cf. A024216.
Programs
-
Magma
I:=[1,6]; [n le 2 select I[n] else (8*n-10)*Self(n-1)-(4*n-7)^2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 26 2015
-
Maple
a:= proc(n) option remember; `if`(n<3, [1, 6, 59][n+1], (8*n-2)*a(n-1) -(4*n-3)^2*a(n-2)) end; seq(a(n), n=0..20); # Alois P. Heinz, Feb 25 2015
-
Mathematica
Table[Det[Array[KroneckerDelta[#1,#2]((4*#1+2)-1)+1&,{k, k}]],{k,1,10}] (* John M. Campbell, May 23 2011 *) RecurrenceTable[{a[0] == 1, a[1] == 6, a[n] == (8 n - 2) a[n - 1] - (4 n - 3)^2 a[n - 2]}, a, {n, 0, 20}] (* Vincenzo Librandi, Dec 26 2015 *)
-
PARI
x = 'x + O('x^33); Vec(serlaplace((4-log(1-4*x))/(4*(1-4*x)^(5/4)))) \\ Gheorghe Coserea, Dec 24 2015
Formula
a(n) = (8*n-2)*a(n-1) - (4*n-3)^2*a(n-2) for n>1. - Alois P. Heinz, Feb 25 2015
E.g.f.: (4-log(1-4*x))/(4*(1-4*x)^(5/4)). - Gheorghe Coserea, Dec 24 2015
Extensions
More terms from Alois P. Heinz, Feb 25 2015
Comments