cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A024216 a(n) = n-th elementary symmetric function of the first n+1 positive integers congruent to 1 mod 3.

Original entry on oeis.org

1, 5, 39, 418, 5714, 95064, 1864456, 42124592, 1077459120, 30777463360, 971142388160, 33547112941440, 1259204418129280, 51032742579123200, 2220990565060377600, 103308619261574809600, 5114702794181847910400
Offset: 0

Views

Author

Keywords

Comments

Comment by R. J. Mathar, Oct 01 2016: (Start)
The k-th elementary symmetric functions of the integers 1+j*3, j=0..n-1, form a triangle T(n,k), 0 <= k <= n, n >= 0:
1
1 1
1 5 4
1 12 39 28
1 22 159 418 280
1 35 445 2485 5714 3640
1 51 1005 9605 45474 95064 58240
1 70 1974 28700 227969 959070 1864456 1106560
1 92 3514 72128 859369 5974388 22963996 42124592 24344320
This here is the first subdiagonal. The diagonal seems to be A007559. The first columns are A000012, A000326, A024212, A024213, A024214. (End)

Examples

			From _Gheorghe Coserea_, Dec 24 2015: (Start)
For n = 1 we have a(1) = 1*4*(1/1 + 1/4) = 5.
For n = 2 we have a(2) = 1*4*7*(1/1 + 1/4 + 1/7) = 39.
For n = 3 we have a(3) = 1*4*7*10*(1/1 + 1/4 + 1/7 + 1/10) = 418.
(End)
		

Crossrefs

Cf. A024395, A024382, A286718 (first column).

Programs

  • Magma
    I:=[5,39]; [1] cat [n le 2 select I[n] else (6*n-1) * Self(n-1) - (3*n-2)^2 * Self(n-2) : n in [1..30]]; // Vincenzo Librandi, Aug 30 2015
  • Maple
    f:= gfun:-rectoproc({-(3*n+1)^2*a(n-1)+(6*n+5)*a(n)-a(n+1), a(0) = 1, a(1) = 5, a(2) = 39}, a(n), remember):
    map(f, [$0..30]); # Robert Israel, Aug 30 2015
  • Mathematica
    Rest[CoefficientList[Series[-(1/3)*Log[1-3*x]/(1-3*x)^(1/3), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 07 2013 *)
  • PARI
    n = 33; a = vector(n); a[1] = 5; a[2] = 39;
    for (k = 2, n-1, a[k+1] = (6*k+5) * a[k] - (3*k+1)^2 * a[k-1]);
    print(concat(1,a));  \\ Gheorghe Coserea, Aug 29 2015
    

Formula

E.g.f. (for offset 1): -(1/3)*log(1-3*x)/(1-3*x)^(1/3). - Vladeta Jovovic, Sep 26 2003
For n >= 1, a(n-1) = 3^(n-1)*n!*Sum_{k=0..n-1} binomial(k-2/3, k)/(n-k). - Milan Janjic, Dec 14 2008, corrected by Peter Bala, Oct 08 2013
a(n) ~ (n+1)! * GAMMA(2/3) * 3^(n+3/2) * (log(n) + gamma + Pi*sqrt(3)/6 + 3*log(3)/2) / (6*Pi*n^(2/3)), where "GAMMA" is the Gamma function and "gamma" is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 07 2013
a(n+1) = (6*n+5) * a(n) - (3*n+1)^2 * a(n-1). - Gheorghe Coserea, Aug 29 2015
E.g.f.: (3 - log(1-3*x))/(3*(1-3*x)^(4/3)). - Robert Israel, Aug 30 2015
a(n) = A286718(n+1, 1), n >= 0.
Boas-Buck type recurrence: a(0) = 1 and for n >= 1: a(n) = ((n+1)!/n) * Sum_{p=1..n} 3^(n-p)*(1 + 3*beta(n-p))*a(p-1)/p!, with beta(k) = A002208(k+1) / A002209(k+1). Proof from a(n) = A286718(n+1, 1). - Wolfdieter Lang, Aug 09 2017

Extensions

More terms from Vladeta Jovovic, Sep 26 2003

A290319 Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 4*x)^(-1/4), (-1/4)*log(1 - 4*x)). A generalized Stirling1 triangle.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 45, 59, 15, 1, 585, 812, 254, 28, 1, 9945, 14389, 5130, 730, 45, 1, 208845, 312114, 122119, 20460, 1675, 66, 1, 5221125, 8011695, 3365089, 633619, 62335, 3325, 91, 1, 151412625, 237560280, 105599276, 21740040, 2441334, 158760, 5964, 120, 1, 4996616625, 7990901865, 3722336388, 823020596, 102304062, 7680414, 355572, 9924, 153, 1, 184874815125, 300659985630, 145717348221, 34174098440, 4608270890, 386479380, 20836578, 722760, 15585, 190, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 08 2017

Keywords

Comments

This generalization of the unsigned Stirling1 triangle A132393 is called here |S1hat[4,1]|.
The signed matrix S1hat[4,1] with elements (-1)^(n-k)*|S1hat[4,1]|(n, k) is the inverse of the generalized Stirling2 Sheffer matrix S2hat[4,1] with elements S2[4,1](n, k)/d^k, where S2[4,1] is Sheffer (exp(x), exp(4*x) - 1), given in A285061. See also the P. Bala link below for the scaled and signed version s_{(4,0,1)}.
For the general |S1hat[d,a]| case see a comment in A286718.

Examples

			The triangle T(n, k) begins:
  n\k         0         1         2        3       4      5    6   7  8 ...
  0:          1
  1:          1         1
  2:          5         6         1
  3:         45        59        15        1
  4:        585       812       254       28       1
  5:       9945     14389      5130      730      45      1
  6:     208845    312114    122119    20460    1675     66    1
  7:    5221125   8011695   3365089   633619   62335   3325   91   1
  8:  151412625 237560280 105599276 21740040 2441334 158760 5964 120  1
  ...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: T(4, 2) = T(3, 1) + (16 - 3)*T(3, 2) = 59 + 13*15 = 254.
Boas-Buck recurrence for column k=2 and n=4:
T(4, 2) = (4!/2)*(4*(1 + 8*(5/12))*T(2, 2)/2! + 1*(1 + 8*(1/2))*T(3,2)/3!) = (4!/2)*(2*13/3 + 5*15/3!) = 254. (End)
		

Crossrefs

S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is A048993, A154537, A282629, A225466, A285061 and A225467, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,1], [3,2] and [4,3] is A132393, A028338, A286718, A225470 and A225471, respectively.
Columns k=0..3 give A007696, A024382(n-1), A383700, A383701.
Row sums: A001813. Alternating row sums: A000007.

Programs

  • Mathematica
    FoldList[Join[Table[If[i == 1, 0, #[[i-1]]] + (4*#2 - 3)*#[[i]], {i, Length[#]}], {1}] &, {1}, Range[10]] (* Paolo Xausa, Aug 18 2025 *)

Formula

Recurrence: T(n, k) = T(n-1, k-1) + (4*n - 3)*T(n-1, k), for n >= 1, k = 0..n, and T(n, -1) = 0, T(0, 0) = 1 and T(n, k) = 0 for n < k.
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (i.e., e.g.f. of the triangle): (1 - 4*z)^{-(x + 1)/4}.
E.g.f. of column k is (1 - 4*x)^(-1/4)*((-1/4)*log(1 - 4*x))^k/k!.
Recurrence for row polynomials is R(n, x) = (x+1)*R(n-1, x+4), with R(0, x) = 1. Row polynomial R(n, x) = risefac(4,1;x,n) with the rising factorial risefac(d,a;x,n) :=Product_{j=0..n-1} (x + (a + j*d)). (For the signed case see the Bala link, eq. (16)).
T(n, k) = sigma^{(n)}{n-k}(a_0, a_1, ..., a{n-1}) with the elementary symmetric functions with indeterminates a_j = 1 + 4*j.
T(n, k) = Sum_{j=0..n-k} binomial(n-j, k)*|S1|(n, n-j)*4^j, with the unsigned Stirling1 triangle |S1| = A132393.
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 4^(n-1-p)*(1 + 4*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1), beginning with {1/2, 5/12, 3/8, 251/720, ...}. See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017

A383231 Expansion of e.g.f. f(x) * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).

Original entry on oeis.org

0, 1, 7, 83, 1394, 30330, 810756, 25710012, 943434288, 39324264624, 1835297984160, 94813760519136, 5371462318747392, 331125138305434368, 22065681276731119104, 1580617232453691210240, 121117633854691036502016, 9885823380533972300470272, 856279708828545483688808448
Offset: 0

Views

Author

Seiichi Manyama, Apr 20 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, k*5^(n-k)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=1..n} k * 5^(n-k) * |Stirling1(n,k)|.
a(n) = 5^(n-1) * n! * Sum_{k=0..n-1} (-1)^k * binomial(-1/5,k)/(n-k).
a(n) = (10*n-13) * a(n-1) - (5*n-9)^2 * a(n-2) for n > 1.
Showing 1-3 of 3 results.