A024462 Triangle T(n,k) read by rows, arising in enumeration of catafusenes.
1, 1, 1, 1, 2, 1, 1, 5, 7, 3, 1, 8, 22, 24, 9, 1, 11, 46, 90, 81, 27, 1, 14, 79, 228, 351, 270, 81, 1, 17, 121, 465, 1035, 1323, 891, 243, 1, 20, 172, 828, 2430, 4428, 4860, 2916, 729, 1, 23, 232, 1344, 4914, 11718, 18144, 17496, 9477, 2187, 1, 26, 301, 2040, 8946, 26460, 53298, 71928, 61965, 30618, 6561
Offset: 0
Examples
Triangle begins (rows indexed by n >= 0 and columns by k >= 0): 1; 1, 1; 1, 2, 1; 1, 5, 7, 3; 1, 8, 22, 24, 9; 1, 11, 46, 90, 81, 27; 1, 14, 79, 228, 351, 270, 81; 1, 17, 121, 465, 1035, 1323, 891, 243; 1, 20, 172, 828, 2430, 4428, 4860, 2916, 729; ...
Links
- G. C. Greubel, Rows n = 0..20 of triangle, flattened
- S. J. Cyvin, B. N. Cyvin, and J. Brunvoll, Unbranched catacondensed polygonal systems containing hexagons and tetragons, Croatica Chem. Acta, 69 (1996), 757-774; see Table III (p. 767).
Crossrefs
Programs
-
Maple
## The following Maple program gives the Taylor expansion of the bivariate g.f. of T(n,k) in powers of x: T := proc (x, y) 1+x*(y+1)+x^2*(y+1)^2/(1-x-3*y*x) end proc; expand(taylor(T(x, y), x = 0, 20)); ## Petros Hadjicostas, May 27 2019
-
Mathematica
T[n_, 0]:= 1; T[n_, k_]:= If[k<0 || k>n, 0, If[n==1 && k==1, 1, If[n==2 && k==1, 2, If[k==n && n>=2, 3^(n-2), 3*T[n-1, k-1] + T[n-1, k]]]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, May 30 2019 *)
-
PARI
T(n,k)=if(n<0||k<0||k>n,0,if(n<3,[[1],[1,1],[1,2,1]][n+1][k+1],3*T(n-1,k-1)+T(n-1,k))) \\ Ralf Stephan, Jan 25 2005
-
Sage
def T(n, k): if (k<0 and k>n): return 0 elif (k==0): return 1 elif (n==k==1): return 1 elif (n==2 and k==1): return 2 elif (n>=2 and k==n): return 3^(n-2) else: return 3*T(n-1, k-1) + T(n-1, k) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 30 2019
Formula
T(n, k) = 3 * T(n-1, k-1) + T(n-1, k), starting with [1], [1, 1], [1, 2, 1].
From Petros Hadjicostas, May 27 2019: (Start)
T(n, k) = (n-2)!/(k! * (n-k)!) * (9*n*(n-1) - 4*k*(3*n-k-2)) * 3^(k-2) for n >= max(k, 2) and k >= 0. (See the top formula of p. 767 in Cyvin et al. (1996).)
Bivariate g.f.: Sum_{n, k >= 0} T(n, k) * x^n * y^k = 1 + x * (1 + y) + x^2 * (1 + y)^2/(1 - x - 3 * x * y).
(End)
Extensions
More terms from James Sellers, May 03 2000
Edited by Ralf Stephan, Jan 25 2005