cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024482 a(n) = (1/2)*(binomial(2n, n) - binomial(2n-2, n-1)).

Original entry on oeis.org

2, 7, 25, 91, 336, 1254, 4719, 17875, 68068, 260338, 999362, 3848222, 14858000, 57500460, 222981435, 866262915, 3370764540, 13135064250, 51250632510, 200205672810, 782920544640, 3064665881940, 12007086477750, 47081501377326, 184753963255176, 725510446350004
Offset: 2

Views

Author

Keywords

Comments

Apparently the number of sawtooth patterns in all Dyck paths of semilength n, ([0,1],2,7,25,...). A sawtooth pattern is of the form (UD)^k, k >= 1. More generally, the number of sawtooth patterns of length > t in all Dyck paths with semilength (n+t), t >= 0. - David Scambler, Apr 23 2013

Examples

			The path udUududD has two sawtooth patterns, shown in lower case.
		

Crossrefs

Programs

  • Magma
    [(3*n-2)*Catalan(n-1)/2: n in [2..40]]; // G. C. Greubel, Apr 03 2024
    
  • Maple
    Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z)/2: Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=2..25); # Zerinvary Lajos, Jan 16 2007
  • Mathematica
    Table[(Binomial[2n,n]-Binomial[2n-2,n-1])/2,{n,2,30}] (* Harvey P. Dale, Mar 04 2011 *)
  • SageMath
    [(3*n-2)*catalan_number(n-1)/2 for n in range(2,41)] # G. C. Greubel, Apr 03 2024

Formula

a(n) = A051924(n)/2. - Zerinvary Lajos, Jan 16 2007
From R. J. Mathar, Nov 09 2018: (Start)
D-finite with recurrence n*a(n) - (5*n-4)*a(n-1) + 2*(2*n-5)*a(n-2) = 0.
n*(3*n-5)*a(n) - 2*(3*n-2)*(2*n-3)*a(n-1) = 0. (End)
a(n) ~ 3*2^(2*n-3)/sqrt(n*Pi). - Stefano Spezia, May 09 2023
From G. C. Greubel, Apr 03 2024: (Start)
a(n) = (3*n-2)*A000108(n-1)/2.
G.f.: ((1-x)*sqrt(1-4*x) - (1+x)*(1-4*x))/(2*(1-4*x)).
E.g.f.: (1/2)*( -1 - x + exp(2*x)*( (1-x)*BesselI(0, 2*x) + x*BesselI(1, 2*x) ) ). (End)