cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A051924 a(n) = binomial(2*n,n) - binomial(2*n-2,n-1); or (3n-2)*C(n-1), where C = Catalan numbers (A000108).

Original entry on oeis.org

1, 4, 14, 50, 182, 672, 2508, 9438, 35750, 136136, 520676, 1998724, 7696444, 29716000, 115000920, 445962870, 1732525830, 6741529080, 26270128500, 102501265020, 400411345620, 1565841089280, 6129331763880, 24014172955500, 94163002754652, 369507926510352
Offset: 1

Views

Author

Barry E. Williams, Dec 19 1999

Keywords

Comments

Number of partitions with Ferrers plots that fit inside an n X n box, but not in an n-1 X n-1 box. - Wouter Meeussen, Dec 10 2001
From Benoit Cloitre, Jan 29 2002: (Start)
Let m(1,j)=j, m(i,1)=i and m(i,j) = m(i-1,j) + m(i,j-1); then a(n) = m(n,n):
1 2 3 4 ...
2 4 7 11 ...
3 7 14 25 ...
4 11 25 50 ... (End)
This sequence also gives the number of clusters and non-crossing partitions of type D_n. - F. Chapoton, Jan 31 2005
If Y is a 2-subset of a 2n-set X then a(n) is the number of (n+1)-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
Prefaced with a 1: (1, 1, 4, 14, 50, ...) and convolved with the Catalan sequence = A097613: (1, 2, 7, 25, 91, ...). - Gary W. Adamson, May 15 2009
Total number of up steps before the second return in all Dyck n-paths. - David Scambler, Aug 21 2012
Conjecture: a(n) mod n^2 = n+2 iff n is an odd prime. - Gary Detlefs, Feb 19 2013
First differences of A000984 and A030662. - J. M. Bergot, Jun 22 2013
From R. J. Mathar, Jun 30 2013: (Start)
Equivalent to the Meeussen comment and the Bergot comment: The array view of A007318 is
1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6,
1, 3, 6, 10, 15, 21,
1, 4, 10, 20, 35, 56,
1, 5, 15, 35, 70, 126,
1, 6, 21, 56, 126, 252,
and a(n) are the hook sums Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). (End)
From Gus Wiseman, Apr 12 2019: (Start)
Equivalent to Wouter Meeussen's comment, a(n) is the number of integer partitions (of any positive integer) such that the maximum of the length and the largest part is n. For example, the a(1) = 1 through a(3) = 14 partitions are:
(1) (2) (3)
(11) (31)
(21) (32)
(22) (33)
(111)
(211)
(221)
(222)
(311)
(321)
(322)
(331)
(332)
(333)
(End)
Coxeter-Catalan numbers for Coxeter groups of type D_n [Armstrong]. - N. J. A. Sloane, Mar 09 2022
a(n+1) is the number of ways that a best of n pairs contest with early termination can go. For example, the first stage of an association football (soccer) penalty-kick shoot out has n=5 pairs of shots and there are a(6)=672 distinct ways it can go. For n=2 pairs, writing G for goal and M for miss, and listing the up-to-four shots in chronological order with teams alternating shots, the n(3)=14 possibilities are MMMM, MMMG, MMGM, MMGG, MGM, MGGM, MGGG, GMMM, GMMG, GMG, GGMM, GGMG, GGGM, and GGGG. Not all four shots are taken in two cases because it becomes impossible for one team to overcome the lead of the other team. - Lee A. Newberg, Jul 20 2024

Examples

			Sums of {1}, {2, 1, 1}, {2, 2, 3, 3, 2, 1, 1}, {2, 2, 4, 5, 7, 6, 7, 5, 5, 3, 2, 1, 1}, ...
		

References

  • Drew Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274 16; See Table 2.8.

Crossrefs

Left-central elements of the (1, 2)-Pascal triangle A029635.
Column sums of A096771.
Cf. A000108, A024482 (diagonal from 2), A076540 (diagonal from 3), A000124 (row from 2), A004006 (row from 3), A006522 (row from 4).
Cf. A128064; first differences of A000984.
Cf. A097613.

Programs

  • Haskell
    a051924 n = a051924_list !! (n-1)
    a051924_list = zipWith (-) (tail a000984_list) a000984_list
    -- Reinhard Zumkeller, May 25 2013
    
  • Magma
    [Binomial(2*n, n)-Binomial(2*n-2, n-1): n in [1..28]]; // Vincenzo Librandi, Dec 21 2016
  • Maple
    C:= n-> binomial(2*n, n)/(n+1): seq((n+1)*C(n)-n*C(n-1), n=1..25); # Emeric Deutsch, Jan 08 2008
    Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..24); # Zerinvary Lajos, Jan 01 2007
    a := n -> 2^(-2+2*n)*GAMMA(-1/2+n)*(3*n-2)/(sqrt(Pi)*GAMMA(1+n)):
    seq(simplify(a(n)), n=1..24); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[Binomial[2n,n]-Binomial[2n-2,n-1],{n,30}] (* Harvey P. Dale, Jan 15 2012 *)
  • PARI
    a(n)=binomial(2*n,n)-binomial(2*n-2,n-1) \\ Charles R Greathouse IV, Jun 25 2013
    
  • PARI
    {a(n)=polcoeff((1-x) / sqrt(1-4*x +x*O(x^n)) - 1,n)}
    for(n=1,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • PARI
    {a(n)=polcoeff( sum(m=1, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(2*m)), n)}
    for(n=1, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 08 2014
    
  • Sage
    a = lambda n: 2^(-2+2*n)*gamma(n-1/2)*(3*n-2)/(sqrt(pi)*gamma(1+n))
    [a(n) for n in (1..120)] # Peter Luschny, Dec 14 2015
    

Formula

G.f.: (1-x) / sqrt(1-4*x) - 1. - Paul D. Hanna, Nov 08 2014
G.f.: Sum_{n>=1} x^n/(1-x)^(2*n) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
a(n+1) = binomial(2*n, n) + 2*Sum_{i=0..n-1} binomial(n+i, i) (V's in Pascal's Triangle). - Jon Perry Apr 13 2004
a(n) = n*C(n-1) - (n-1)*C(n-2), where C(n) = A000108(n) = Catalan(n). For example, a(5) = 50 = 5*C(4) - 4*C(3) - 5*14 - 3*5 = 70 - 20. Triangle A128064 as an infinite lower triangular matrix * A000108 = A051924 prefaced with a 1: (1, 1, 4, 14, 50, 182, ...). - Gary W. Adamson, May 15 2009
Sum of 3 central terms of Pascal's triangle: 2*C(2+2*n, n)+C(2+2*n, 1+n). - Zerinvary Lajos, Dec 20 2005
a(n+1) = A051597(2n,n). - Philippe Deléham, Nov 26 2006
The sequence 1,1,4,... has a(n) = C(2*n,n)-C(2*(n-1),n-1) = 0^n+Sum_{k=0..n} C(n-1,k-1)*A002426(k), and g.f. given by (1-x)/(1-2*x-2*x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-.... (continued fraction). - Paul Barry, Oct 17 2009
a(n) = (3*n-2)*(2*n-2)!/(n*(n-1)!^2) = A001700(n) + A001791(n-1). - David Scambler, Aug 21 2012
D-finite with recurrence: a(n) = 2*(3*n-2)*(2*n-3)*a(n-1)/(n*(3*n-5)). - Alois P. Heinz, Apr 25 2014
a(n) = 2^(-2+2*n)*Gamma(-1/2+n)*(3*n-2)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
a(n) ~ (3/4)*4^n*(1-(7/24)/n-(7/128)/n^2-(85/3072)/n^3-(581/32768)/n^4-(2611/262144)/n^5)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
E.g.f.: ((1 - x)*BesselI(0,2*x) + x*BesselI(1,2*x))*exp(2*x) - 1. - Ilya Gutkovskiy, Dec 20 2016
a(n) = 2 * A097613(n) for n > 1. - Bruce J. Nicholson, Jan 06 2019
Sum_{n>=1} a(n)/8^n = 7/(4*sqrt(2)) - 1. - Amiram Eldar, May 06 2023

Extensions

Edited by N. J. A. Sloane, May 03 2008, at the suggestion of R. J. Mathar

A097613 a(n) = binomial(2n-3,n-1) + binomial(2n-2,n-2).

Original entry on oeis.org

1, 2, 7, 25, 91, 336, 1254, 4719, 17875, 68068, 260338, 999362, 3848222, 14858000, 57500460, 222981435, 866262915, 3370764540, 13135064250, 51250632510, 200205672810, 782920544640, 3064665881940, 12007086477750, 47081501377326, 184753963255176, 725510446350004
Offset: 1

Views

Author

David Callan, Sep 20 2004

Keywords

Comments

a(n) is the number of Dyck (2n-1)-paths with maximum pyramid size = n. A pyramid in a Dyck path is a maximal subpath of the form k upsteps immediately followed by k downsteps and its size is k.
a(n) is the total number of runs of peaks in all Dyck (n+1)-paths. A run of peaks is a maximal subpath of the form (UD)^k with k>=1. For example, a(2)=7 because the 5 Dyck 3-paths contain a total of 7 runs of peaks (in uppercase type): uuUDdd, uUDUDd, uUDdUD, UDuUDd, UDUDUD. - David Callan, Jun 07 2006
Binomial transform of A113682. - Paul Barry, Aug 21 2007
If Y is a fixed 2-subset of a (2n+1)-set X then a(n+1) is the number of n-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Equals the Catalan sequence, A000108, convolved with A051924 prefaced with a 1: (1, 1, 4, 14, 50, ...). - Gary W. Adamson, May 15 2009
Central terms of triangle A209561. - Reinhard Zumkeller, Dec 26 2012
Also the number of compositions of 2*(n-1) in which the odd parts appear as many times in odd as in even positions. - Alois P. Heinz, May 26 2018

Examples

			a(2) = 2 because UUDDUD and UDUUDD each have maximum pyramid size = 2.
		

Crossrefs

Same as A024482 except for first term.

Programs

  • GAP
    Flat(List([1..30], n->Binomial(2*n-3, n-1)+Binomial(2*n-2, n-2))); # Stefano Spezia, Oct 27 2018
    
  • Haskell
    a097613 n = a209561 (2 * n - 1) n  -- Reinhard Zumkeller, Dec 26 2012
    
  • Magma
    [((3*n-2)*Catalan(n-1)+0^(n-1))/2: n in [1..40]]; // G. C. Greubel, Apr 04 2024
  • Maple
    Z:=(1-z-sqrt(1-4*z))/sqrt(1-4*z)/2: Zser:=series(Z, z=0, 32): seq (ceil(coeff(Zser, z, n)), n=1..22); # Zerinvary Lajos, Jan 16 2007
    a := n -> `if`(n=1, 1, (2-3*n)/(4-8*n)*binomial(2*n, n)):
    seq(a(n), n=1..27); # Peter Luschny, Sep 06 2014
  • Mathematica
    a[1]=1; a[n_] := (3n-2)(2n-3)!/(n!(n-2)!); Array[a, 27] (* Jean-François Alcover, Oct 27 2018 *)
  • PARI
    a(n)=binomial(2*n-3,n-1)+binomial(2*n-2,n-2) \\ Charles R Greathouse IV, Aug 05 2013
    
  • Sage
    @CachedFunction
    def A097613(n):
        if n < 3: return n
        return (6*n-4)*(2*n-3)*A097613(n-1)/(n*(3*n-5))
    [A097613(n) for n in (1..27)] # Peter Luschny, Sep 06 2014
    

Formula

G.f.: (x-1)*(1 - 1/sqrt(1-4*x))/2.
a(n) = ceiling(A051924(n)/2). - Zerinvary Lajos, Jan 16 2007
Integral representation as n-th moment of a signed weight function W(x) = W_a(x) + W_c(x), where W_a(x) = Dirac(x)/2 is the discrete (atomic) part, and W_c(x) = (1/(2*Pi))*((x-1))*sqrt(1/(x*(4-x))) is the continuous part of W(x) defined on (0,4): a(n) = Integral_{x=-eps..eps} x^n*W_a(x) + Integral_{x=0..4} x^n*W_c(x) for any eps > 0, n >= 0. W_c(0) = -infinity, W_c(1) = 0 and W_c(4) = infinity. For 0 < x < 1, W_c(x) < 0, and for 1 < x < 4, W_c(x) > 0. - Karol A. Penson, Aug 05 2013
From Peter Luschny, Sep 06 2014: (Start)
a(n) = ((2-3*n)/(4-8*n))*binomial(2*n,n) for n >= 2.
D-finite with recurrence: a(n) = (6*n-4)*(2*n-3)*a(n-1)/(n*(3*n-5)) for n >= 3. (End)
a(n) ~ 3*2^(2*n-3)/sqrt(n*Pi). - Stefano Spezia, May 09 2023
From G. C. Greubel, Apr 04 2024: (Start)
a(n) = (1/2)*( (3*n-2)*A000108(n-1) + [n=1]).
E.g.f.: (1/2)*(-1+x + exp(2*x)*((1-x)*BesselI(0,2*x) + x*BesselI(1,2*x) )). (End)

A051960 a(n) = C(n)*(3n+2) where C(n) = Catalan numbers = A000108.

Original entry on oeis.org

2, 5, 16, 55, 196, 714, 2640, 9867, 37180, 140998, 537472, 2057510, 7904456, 30458900, 117675360, 455657715, 1767883500, 6871173870, 26747767200, 104268528210, 406975466040, 1590307356300, 6220814327520, 24357232569150, 95452906901976, 374369872911804
Offset: 0

Views

Author

Barry E. Williams, Jan 05 2000

Keywords

Comments

If Y is a fixed 2-subset of a 2n-set X then a(n-1) is the number of n-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
a(n-1) is the number of vertices in the n-dimensional halohedron (or equivalently, n-cycle cubeahedron). - Vincent Pilaud, May 12 2020

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A000108 and A051924.
Cf. A024482 and A097613.
Half A028283.

Programs

  • Magma
    [Catalan(n)*(3*n+2): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
  • Maple
    a := n -> 4^n*(2+3*n)*GAMMA(1/2+n)/(sqrt(Pi)*GAMMA(2+n)):
    seq(a(n), n=0..25); # Peter Luschny, Dec 14 2015
  • Mathematica
    Table[CatalanNumber[n] (3n+2), {n,0,30}] (* Michael De Vlieger, Sep 30 2015 *)
  • Maxima
    a(n):=sum(binomial(n-k+1,k)*2^(n-2*k+1)*binomial(n,k),k,0,(n+1)/2); /* Vladimir Kruchinin, Sep 30 2015 */
    
  • PARI
    a(n) = (3*n+2)*binomial(2*n, n)/(n+1);
    vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
    

Formula

(n+1)*a(n) - 2*(n+2)*a(n-1) - 4*(2*n-3)*a(n-2) = 0. - conjectured by R. J. Mathar, Oct 02 2014, verified by Robert Israel, Sep 30 2015
G.f.: (1 + 2*x)/(2*x*sqrt(1-4*x)) - 1/(2*x). - Vladimir Kruchinin, Sep 30 2015.
a(n) = Sum_{k=0..(n+1)/2} (binomial(n-k+1,k)*2^(n-2*k+1)*binomial(n,k)). - Vladimir Kruchinin, Sep 30 2015.
a(n) = 4^n*(2+3*n)*Gamma(n + 1/2)/(sqrt(Pi)*Gamma(n+2)). - Peter Luschny, Dec 14 2015
a(n - 1) = A051924(n) + A000108(n - 1). - F. Chapoton, Mar 05 2022
Sum_{n>=0} a(n)/8^n = 5*sqrt(2) - 4. - Amiram Eldar, May 06 2023
E.g.f.: exp(2*x)*(2*BesselI(0,2*x) + BesselI(1,2*x)). - Stefano Spezia, May 14 2025
a(n) = 2*binomial(2*n, n) + binomial(2*n, n-1) = 2*A000984(n) + A001791(n). - Peter Bala, Aug 23 2025

A264357 Array A(r, n) of number of independent components of a symmetric traceless tensor of rank r and dimension n, written as triangle T(n, r) = A(r, n-r+2), n >= 1, r = 2..n+1.

Original entry on oeis.org

0, 2, 0, 5, 2, 0, 9, 7, 2, 0, 14, 16, 9, 2, 0, 20, 30, 25, 11, 2, 0, 27, 50, 55, 36, 13, 2, 0, 35, 77, 105, 91, 49, 15, 2, 0, 44, 112, 182, 196, 140, 64, 17, 2, 0, 54, 156, 294, 378, 336, 204, 81, 19, 2, 0
Offset: 1

Views

Author

Wolfdieter Lang, Dec 10 2015

Keywords

Comments

A (totally) symmetric traceless tensor of rank r >= 2 and dimension n >= 1 is irreducible.
The array of the number of independent components of a rank r symmetric traceless tensor A(r, n), for r >= 2 and n >=1, is given by risefac(n,r)/r! - risefac(n,r-2)/(r-2)!, where the first term gives the number of independent components of a symmetric tensors of rank r (see a Dec 10 2015 comment under A135278) and the second term is the number of constraints from the tracelessness requirement. The tensor has to be traceless in each pair of indices.
The first rows of the array A, or the first columns (without the first r-2 zeros) of the triangle T are for r = 2..6: A000096, A005581, A005582, A005583, A005584.
Equals A115241 with the first column of positive integers removed. - Georg Fischer, Jul 26 2023

Examples

			The array A(r, n) starts:
   r\n 1 2  3   4   5    6    7     8     9    10 ...
   2:  0 2  5   9  14   20   27    35    44    54
   3:  0 2  7  16  30   50   77   112   156   210
   4:  0 2  9  25  55  105  182   294   450   660
   5:  0 2 11  36  91  196  378   672  1122  1782
   6:  0 2 13  49 140  336  714  1386  2508  4290
   7:  0 2 15  64 204  540 1254  2640  5148  9438
   8:  0 2 17  81 285  825 2079  4719  9867 19305
   9:  0 2 19 100 385 1210 3289  8008 17875 37180
  10:  0 2 21 121 506 1716 5005 13013 30888 68068
  ...
The triangle T(n, r) starts:
   n\r  2   3   4   5   6   7  8  9 10 11 ...
   1:   0
   2:   2   0
   3:   5   2   0
   4:   9   7   2   0
   5:  14  16   9   2   0
   6:  20  30  25  11   2   0
   7:  27  50  55  36  13   2  0
   8:  35  77 105  91  49  15  2  0
   9:  44 112 182 196 140  64 17  2  0
  10:  54 156 294 378 336 204 81 19  2  0
  ...
A(r, 1) = 0 , r >= 2, because a symmetric rank r tensor t of dimension one has one component t(1,1,...,1) (r 1's) and if the traces vanish then t vanishes.
A(3, 2) = 2 because a symmetric rank 3 tensor t with three indices taking values from 1 or 2 (n=2) has the four independent components t(1,1,1), t(1,1,2), t(1,2,2), t(2,2,2), and (invoking symmetry) the vanishing traces are Sum_{j=1..2} t(j,j,1) = 0 and Sum_{j=1..2} t(j,j,2) = 0. These are two constraints, which can be used to eliminate, say, t(1,1,1) and t(2,2,2), leaving 2 = A(3, 2) independent components, say, t(1,1,2) and t(1,2,2).
From _Peter Luschny_, Dec 14 2015: (Start)
The diagonals diag(n, k) start:
   k\n  0       1       2       3       4      5       6
   0:   0,      2,      9,     36,    140,   540,   2079, ... A007946
   1:   2,      7,     25,     91,    336,  1254,   4719, ... A097613
   2:   5,     16,     55,    196,    714,  2640,   9867, ... A051960
   3:   9,     30,    105,    378,   1386,  5148,  19305, ... A029651
   4:  14,     50,    182,    672,   2508,  9438,  35750, ... A051924
   5:  20,     77,    294,   1122,   4290, 16445,  63206, ... A129869
   6:  27,    112,    450,   1782,   7007, 27456, 107406, ... A220101
   7:  35,    156,    660,   2717,  11011, 44200, 176358, ... A265612
   8:  44,    210,    935,    4004, 16744, 68952, 281010, ... A265613
  A000096,A005581,A005582,A005583,A005584.
(End)
		

Crossrefs

Programs

  • Mathematica
    A[r_, n_] := Pochhammer[n, r]/r! - Pochhammer[n, r-2]/(r-2)!;
    T[n_, r_] := A[r, n-r+2];
    Table[T[n, r], {n, 1, 10}, {r, 2, n+1}] (* Jean-François Alcover, Jun 28 2019 *)
  • Sage
    A = lambda r, n: rising_factorial(n,r)/factorial(r) - rising_factorial(n,r-2)/factorial(r-2)
    for r in (2..10): [A(r,n) for n in (1..10)] # Peter Luschny, Dec 13 2015

Formula

T(n, r) = A(r, n-r+2) with the array A(r, n) = risefac(n,r)/r! - risefac(n,r-2)/(r-2)! where the rising factorial risefac(n,k) = Product_{j=0..k-1} (n+j) and risefac(n,0) = 1.
From Peter Luschny, Dec 14 2015: (Start)
A(n+2, n+1) = A007946(n-1) = CatalanNumber(n)*3*n*(n+1)/(n+2) for n>=0.
A(n+2, n+2) = A024482(n+2) = A097613(n+2) = CatalanNumber(n+1)*(3*n+4)/2 for n>=0.
A(n+2, n+3) = A051960(n+1) = CatalanNumber(n+1)*(3*n+5) for n>=0.
A(n+2, n+4) = A029651(n+2) = CatalanNumber(n+1)*(6*n+9) for n>=0.
A(n+2, n+5) = A051924(n+3) = CatalanNumber(n+2)*(3*n+7) for n>=0.
A(n+2, n+6) = A129869(n+4) = CatalanNumber(n+2)*(3*n+8)*(2*n+5)/(n+4) for n>=0.
A(n+2, n+7) = A220101(n+4) = CatalanNumber(n+3)*(3*(n+3)^2)/(n+5) for n>=0.
A(n+2, n+8) = CatalanNumber(n+4)*(n+3)*(3*n+10)/(2*n+12) for n>=0.
Let for n>=0 and k>=0 diag(n,k) = A(k+2,n+k+1) and G(n,k) = 2^(k+2*n)*Gamma((3-(-1)^k+2*k+4*n)/4)/(sqrt(Pi)*Gamma(k+n+0^k)) then
diag(n,0) = G(n,0)*(n*3)/(n+2),
diag(n,1) = G(n,1)*(3*n+4)/((n+1)*(n+2)),
diag(n,2) = G(n,2)*(3*n+5)/(n+2),
diag(n,3) = G(n,3)*3,
diag(n,4) = G(n,4)*(3*n+7),
diag(n,5) = G(n,5)*(3*n+8),
diag(n,6) = G(n,6)*3*(3+n)^2,
diag(n,7) = G(n,7)*(3+n)*(10+3*n). (End)

A185080 a(n) = 6 * binomial(2*n,n-1) + binomial(2*n-1,n).

Original entry on oeis.org

7, 27, 100, 371, 1386, 5214, 19734, 75075, 286858, 1100138, 4232592, 16328942, 63146500, 244711260, 950094810, 3694876515, 14390571690, 56122547250, 219140635560, 856617714810, 3351878581740, 13127747882340, 51458942047500, 201869999056206, 792497263436676
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 26 2012

Keywords

Crossrefs

Programs

  • Haskell
    a185080 n = 6 * a007318 (2 * n) (n - 1) + a007318 (2 * n - 1) n
    
  • Magma
    [(13*n+1)*Catalan(n)/2: n in [1..40]]; // G. C. Greubel, Apr 03 2024
    
  • Mathematica
    Table[6Binomial[2n,n-1]+Binomial[2n-1,n],{n,30}] (* Harvey P. Dale, Dec 28 2012 *)
  • SageMath
    [(13*n+1)*binomial(2*n,n)/(2*n+2) for n in range(1,41)] # G. C. Greubel, Apr 03 2024

Formula

a(n) = A046902(2*n,n) (Central terms of Clark's triangle).
a(n) = 6 * A007318(2*n,n-1) + A007318(2*n-1,n).
From G. C. Greubel, Apr 03 2024: (Start)
a(n) = (13*n+1)*A000108(n)/2.
a(n) = (2 + 22*n - 52*n^2)*a(n-1)/(12 - n - 13*n^2).
G.f.: ((6 - 11*x)*sqrt(1-4*x) - (1-4*x)*(6+x))/(2*x*(1-4*x)).
E.g.f.: (1/2)*(-1 + exp(2*x)*(BesselI(0, 2*x) + 12*BesselI(1, 2*x))).(End)

A225015 Number of sawtooth patterns of length 1 in all Dyck paths of semilength n.

Original entry on oeis.org

0, 1, 1, 5, 18, 66, 245, 918, 3465, 13156, 50193, 192270, 739024, 2848860, 11009778, 42642460, 165480975, 643281480, 2504501625, 9764299710, 38115568260, 148955040300, 582714871830, 2281745337300, 8942420595810, 35074414899576, 137672461877850, 540756483094828
Offset: 0

Views

Author

David Scambler, Apr 23 2013

Keywords

Comments

A sawtooth pattern of length 1 is UD not followed by UD.
First differences of A024482.

Crossrefs

Programs

  • Magma
    A024482:= func< n | (3*n-2)*Catalan(n-1)/2 >;
    A225015:= func< n | n le 2 select Floor((n+1)/2) else A024482(n) - A024482(n-1) >;
    [A225015(n): n in [0..40]]; // G. C. Greubel, Apr 03 2024
    
  • Maple
    a:= proc(n) option remember; `if`(n<4, [0, 1, 1, 5][n+1],
           (n-1)*(3*n-4)*(4*n-10)*a(n-1)/(n*(n-2)*(3*n-7)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 24 2013
  • Mathematica
    Join[{0, 0, 1}, Table[(Binomial[2n, n]-Binomial[2n-2, n-1])/2, {n, 2, 25}]] // Differences (* Jean-François Alcover, Nov 12 2020 *)
  • SageMath
    def A024482(n): return (3*n-2)*catalan_number(n-1)/2
    def A225015(n): return floor((n+1)/2) if n<3 else A024482(n) - A024482(n-1)
    [A225015(n) for n in range(41)] # G. C. Greubel, Apr 03 2024

Formula

a(0)=0, a(1)=1, a(n) = A024482(n) - A024482(n-1) for n >= 2.
From G. C. Greubel, Apr 03 2024: (Start)
G.f.: (1-x)^2*(1 - sqrt(1-4*x))/(2*sqrt(1-4*x)).
E.g.f.: -(1/4)*(2-4*x+x^2) + (1/12)*Exp(2*x)*((6-12*x+43*x^2-24*x^3) *BesselI(0, 2*x) - 4*x*(7-5*x)*BesselI(1,2*x) - 3*x^2*(13-8*x)* BesselI(2,2*x)). (End)

A361960 Total semiperimeter of 2-Fuss-Catalan polyominoes of length 2n.

Original entry on oeis.org

2, 12, 71, 430, 2652, 16576, 104652, 665874, 4263050, 27430260, 177233355, 1149159336, 7473264736, 48725661120, 318403991656, 2084753927898, 13673789668854, 89825336129620, 590901795716925, 3892055708986830, 25664871706721940, 169414775012098560, 1119378775384200240, 7402571891557073400, 48993463632294517752, 324501821324483687856
Offset: 1

Views

Author

R. J. Mathar, Mar 31 2023

Keywords

Crossrefs

Cf. A024482 (1-Fuss-Catalan), A075045 (total area), A361961 (3-Fuss-Catalan).

Programs

  • Maple
    Per := proc(s,p,n)
        local i,j,a ;
        a := 0 ;
        for i from 0 to n-1 do
        for j from 0 to n-1-i do
            a := a+ (-1)^j*p^(n+1+i+(s+1)*j) *binomial(n-1+i,i)*binomial(n,j)*binomial(n+s*j,n-1-i-j)/(1-p)^(i+j) ;
        end do:
        end do:
        expand(a/n) ;
        factor(%) ;
    end proc:
    Per1std := proc(s,n)
        local p;
        Per(s,p,n) ;
        diff(%,p) ;
        factor(%) ;
        subs(p=1,%) ;
    end proc:
    seq(Per1std(2,n),n=1..30) ;

Formula

Conjecture: D-finite with recurrence 4*n*(2*n+1)*a(n) -6*n*(11*n-5)*a(n-1) +3*(43*n^2-169*n+130)*a(n-2) -36*(3*n-8)*(3*n-10)*a(n-3)=0.

A361961 Total semiperimeter of 3-Fuss-Catalan polyominoes of length 3n.

Original entry on oeis.org

2, 18, 150, 1275, 11033, 96768, 857440, 7658001, 68827440, 621769016, 5640718746, 51355222113, 468976190634, 4293892636600, 39403880112240, 362321464909965, 3337465898598408, 30791007409655928, 284475382593582680, 2631594710532743340, 24372218297220901965, 225958143637966827240
Offset: 1

Views

Author

R. J. Mathar, Mar 31 2023

Keywords

Crossrefs

Cf. A024482 (1-Fuss-Catalan), A078999 (total area), A361960 (2-Fuss-Catalan).

Programs

  • Maple
    Per := proc(s,p,n)
        local i,j,a ;
        a := 0 ;
        for i from 0 to n-1 do
        for j from 0 to n-1-i do
            a := a+ (-1)^j*p^(n+1+i+(s+1)*j) *binomial(n-1+i,i)*binomial(n,j)*binomial(n+s*j,n-1-i-j)/(1-p)^(i+j) ;
        end do:
        end do:
        expand(a/n) ;
        factor(%) ;
    end proc:
    Per1std := proc(s,n)
        local p;
        Per(s,p,n) ;
        diff(%,p) ;
        factor(%) ;
        subs(p=1,%) ;
    end proc:
    seq(Per1std(3,n),n=1..30) ;

Formula

Conjecture: D-finite with recurrence 3*n*(396221*n -410120) *(3*n-1) *(3*n+1) *a(n) +4*(-86981513*n^4 +457143117*n^3 -996839467*n^2 +906061905*n -279161658) *a(n-1) +32*(2*n-5) *(4*n-9) *(4*n-7) *(2282347*n -1795413)*a(n-2)=0.
Showing 1-8 of 8 results.