A325698 Numbers with as many even as odd prime indices, counted with multiplicity.
1, 6, 14, 15, 26, 33, 35, 36, 38, 51, 58, 65, 69, 74, 77, 84, 86, 90, 93, 95, 106, 119, 122, 123, 141, 142, 143, 145, 156, 158, 161, 177, 178, 185, 196, 198, 201, 202, 209, 210, 214, 215, 216, 217, 219, 221, 225, 226, 228, 249, 262, 265, 278, 287, 291, 299
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 6: {1,2} 14: {1,4} 15: {2,3} 26: {1,6} 33: {2,5} 35: {3,4} 36: {1,1,2,2} 38: {1,8} 51: {2,7} 58: {1,10} 65: {3,6} 69: {2,9} 74: {1,12} 77: {4,5} 84: {1,1,2,4} 86: {1,14} 90: {1,2,2,3} 93: {2,11} 95: {3,8}
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[100],Total[Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>k*(-1)^PrimePi[p]]]==0&]
-
PARI
is(n) = {my(v = vector(2), f = factor(n));for(i = 1, #f~,v[1 + primepi(f[i, 1])%2]+=f[i, 2]);v[1] == v[2]} \\ David A. Corneth, Oct 06 2020
-
Python
from sympy import factorint, primepi def ok(n): v = [0, 0] for p, e in factorint(n).items(): v[primepi(p)%2] += e return v[0] == v[1] print([k for k in range(300) if ok(k)]) # Michael S. Branicky, Apr 16 2022 after David A. Corneth
Comments