cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A063886 Number of n-step walks on a line starting from the origin but not returning to it.

Original entry on oeis.org

1, 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432, 6864, 12870, 25740, 48620, 97240, 184756, 369512, 705432, 1410864, 2704156, 5408312, 10400600, 20801200, 40116600, 80233200, 155117520, 310235040, 601080390, 1202160780, 2333606220, 4667212440
Offset: 0

Views

Author

Henry Bottomley, Aug 28 2001

Keywords

Comments

A Chebyshev transform of A007877(n+1). The g.f. is transformed to (1+x)/((1-x)(1+x^2)) under the mapping G(x)->(1/(1+x^2))G(1/(1+x^2)). - Paul Barry, Oct 12 2004
a(n-1) = 2*C(n-2, floor((n-2)/2)) is also the number of bit strings of length n in which the number of 00 substrings is equal to the number of 11 substrings. For example, when n = 4 we have 4 such bit strings: 0011, 0101, 1010, and 1100. - Angel Plaza, Apr 23 2009
Hankel transform is A120617. - Paul Barry, Aug 10 2009
The Hankel transform of a(n) is (-2)^C(n+1,2). The Hankel transform of (-1)^C(n+1,2)*a(n) is (-1)^C(n+1,2)*A164584(n). - Paul Barry, Aug 17 2009
For n > 1, a(n) is also the number of n-step walks starting from the origin and returning to it exactly once. - Geoffrey Critzer, Jan 24 2010
-a(n) is the Z-sequence for the Riordan array A130777. (See the W. Lang link under A006232 for A- and Z-sequences for Riordan matrices). - Wolfdieter Lang, Jul 12 2011
Number of subsets of {1,...,n} in which the even elements appear as often at even positions as at odd positions. - Gus Wiseman, Mar 17 2018

Examples

			a(4) = 6 because there are six length four walks that do not return to the origin: {-1, -2, -3, -4}, {-1, -2, -3, -2}, {-1, -2, -1, -2}, {1, 2, 1, 2}, {1, 2, 3, 2}, {1, 2, 3, 4}. There are also six such walks that return exactly one time: {-1, -2, -1, 0}, {-1, 0, -1, -2}, {-1, 0, 1, 2}, {1, 0, -1, -2}, {1, 0, 1, 2}, {1, 2, 1, 0}. - _Geoffrey Critzer_, Jan 24 2010
The a(5) = 12 subsets in which the even elements appear as often at even positions as at odd positions: {}, {1}, {3}, {5}, {1,3}, {1,5}, {2,4}, {3,5}, {1,2,4}, {1,3,5}, {2,4,5}, {1,2,4,5}. - _Gus Wiseman_, Mar 17 2018
		

Crossrefs

Programs

  • Magma
    [1] cat [2*Binomial(n-1, Floor((n-1)/2)): n in [1..40]]; // G. C. Greubel, Jun 07 2023
    
  • Maple
    seq(seq(binomial(2*j,j)*i, i=1..2),j=0..16); # Zerinvary Lajos, Apr 28 2007
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, n+1,
           4*a(n-2) +2*(a(n-1) -4*a(n-2))/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 10 2014
    # third program:
    A063886 := series(BesselI(0, 2*x)*(1 + x*2 + x*Pi*StruveL(1, 2*x)) - Pi*x*BesselI(1, 2*x)*StruveL(0, 2*x), x = 0, 34): seq(n!*coeff(A063886, x, n), n = 0 .. 33); # Mélika Tebni, Jun 17 2024
  • Mathematica
    Table[Length[Select[Map[Accumulate, Strings[{-1, 1}, n]], Count[ #, 0] == 0 &]], {n, 0, 20}] (* Geoffrey Critzer, Jan 24 2010 *)
    CoefficientList[Series[Sqrt[(1+2x)/(1-2x)],{x,0,40}],x] (* Harvey P. Dale, Apr 28 2016 *)
  • PARI
    a(n)=(n==0)+2*binomial(n-1,(n-1)\2)
    
  • PARI
    a(n) = 2^n*prod(k=0,n-1,(k/n+1/n)^((-1)^k)); \\ Michel Marcus, Dec 03 2013
    
  • Python
    from math import ceil
    from sympy import binomial
    def a(n):
        if n==0: return 1
        return 2*binomial(n-1,(n-1)//2)
    print([a(n) for n in range(18)])
    # David Nacin, Feb 29 2012
    
  • SageMath
    [2*binomial(n-1, (n-1)//2) + int(n==0) for n in range(41)] # G. C. Greubel, Jun 07 2023

Formula

G.f.: sqrt((1+2*x)/(1-2*x)).
a(n+1) = 2*C(n, floor(n/2)) = 2*A001405(n); a(2n) = C(2n, n) = A000984(n) = 4*a(2n-2)-|A002420(n)| = 4*a(2n-2)-2*A000108(n-1) = 2*A001700(n-1); a(2n+1) = 2*a(2n) = A028329(n).
2*a(n) = A047073(n+1).
a(n) = Sum_{k=0..n} abs(A106180(n,k)). - Philippe Deléham, Oct 06 2006
a(n) = Sum_{k=0..n} (k+1)binomial(n, (n-k)/2) ( 1-cos((k+1)*Pi/2) (1+(-1)^(n-k))/(n+k+2) ). - Paul Barry, Oct 12 2004
G.f.: 1/(1-2*x/(1+x/(1+x/(1-x/(1-x/(1+x/(1+x/(1-x/(1-x/(1+ ... (continued fraction). - Paul Barry, Aug 10 2009
G.f.: 1 + 2*x/(G(0)-x+x^2) where G(k)= 1 - 2*x^2 - x^4/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 10 2012
D-finite with recurrence: n*a(n) = 2*a(n-1) + 4*(n-2)*a(n-2). - R. J. Mathar, Dec 03 2012
From Sergei N. Gladkovskii, Jul 26 2013: (Start)
G.f.: 1/G(0), where G(k) = 1 - 2*x/(1 + 2*x/(1 + 1/G(k+1) )); (continued fraction).
G.f.: G(0), where G(k) = 1 + 2*x/(1 - 2*x/(1 + 1/G(k+1) )); (continued fraction).
G.f.: W(0)/2*(1+2*x), where W(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)/(x*(2*k+1))/W(k+1) )), abs(x) < 1/2; (continued fraction). (End)
a(n) = 2^n*Product_{k=0..n-1} (k/n + 1/n)^((-1)^k). - Peter Luschny, Dec 02 2013
G.f.: G(0), where G(k) = 1 + 2*x*(4*k+1)/((2*k+1)*(1+2*x) - (2*k+1)*(4*k+3)*x*(1+2*x)/((4*k+3)*x + (k+1)*(1+2*x)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 19 2014
From Peter Bala, Mar 29 2024: (Start)
a(n) = 2^n * Sum_{k = 0..n} (-1)^(n+k)*binomial(1/2, k)*binomial(- 1/2, n-k) = 2^n * A000246(n)/n!.
a(n) = (1/2^n) * binomial(2*n, n) * hypergeom([-1/2, -n], [1/2 - n], -1). (End)
E.g.f.: BesselI(0, 2*x)*(1 + x*(2 + Pi)*StruveL(1, 2*x)) - Pi*x*BesselI(1, 2*x)*StruveL(0, 2*x). - Stefano Spezia, May 11 2024
a(n) = A089849(n) + A138364(n). - Mélika Tebni, Jun 17 2024
From Amiram Eldar, Aug 15 2025: (Start)
Sum_{n>=0} 1/a(n) = Pi/(3*sqrt(3)) + 2.
Sum_{n>=0} (-1)^n/a(n) = 2/3 + Pi/(9*sqrt(3)). (End)

A188674 Stack polyominoes with square core.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 3, 4, 5, 7, 9, 13, 17, 24, 31, 42, 54, 71, 90, 117, 147, 188, 236, 298, 371, 466, 576, 716, 882, 1088, 1331, 1633, 1987, 2422, 2935, 3557, 4290, 5177, 6216, 7465, 8932, 10682, 12731, 15169, 18016, 21387, 25321, 29955, 35353, 41696, 49063, 57689, 67698, 79375, 92896, 108633, 126817, 147922, 172272
Offset: 0

Views

Author

Emanuele Munarini, Apr 08 2011

Keywords

Comments

a(n) is the number of stack polyominoes of area n with square core.
The core of stack is the set of all maximal columns.
The core is a square when the number of columns is equal to their height.
Equivalently, a(n) is the number of unimodal compositions of n, where the number of the parts of maximum value equal the maximum value itself. For instance, for n = 10, we have the following stacks:
(1,3,3,3), (3,3,3,1), (1,1,1,1,1,1,2,2), (1,1,1,1,1,2,2,1), (1,1,1,1,2,2,1,1), (1,1,1,2,2,1,1,1), (1,1,2,2,1,1,1,1), (1,2,2,1,1,1,1,1), (2,2,1,1,1,1,1,1).
From Gus Wiseman, Apr 06 2019 and May 21 2022: (Start)
Also the number of integer partitions of n with final part in their inner lining partition equal to 1, where the k-th part of the inner lining partition of a partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. For example, the a(4) = 1 through a(10) = 9 partitions are:
(22) (32) (42) (52) (62) (72) (82)
(221) (321) (421) (521) (333) (433)
(2211) (3211) (4211) (621) (721)
(22111) (32111) (5211) (3331)
(221111) (42111) (6211)
(321111) (52111)
(2211111) (421111)
(3211111)
(22111111)
Also partitions that have a fixed point and a conjugate fixed point, ranked by A353317. The strict case is A352829. For example, the a(0) = 0 through a(9) = 7 partitions are:
() . . (21) (31) (41) (51) (61) (71)
(211) (311) (411) (511) (332)
(2111) (3111) (4111) (611)
(21111) (31111) (5111)
(211111) (41111)
(311111)
(2111111)
Also partitions of n + 1 without a fixed point or conjugate fixed point.
(End)

Crossrefs

Cf. A001523 (stacks).
Positive crank: A001522, ranked by A352874.
Zero crank: A064410, ranked by A342192.
Nonnegative crank: A064428, ranked by A352873.
Fixed point but no conjugate fixed point: A118199, ranked by A353316.
A000041 counts partitions, strict A000009.
A002467 counts permutations with a fixed point, complement A000166.
A115720/A115994 count partitions by Durfee square, rank statistic A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Mathematica
    a[n_]:=CoefficientList[Series[1+Sum[x^((k+1)^2)/Product[(1-x^i)^2,{i,1,k}],{k,0,n}],{x,0,n}],x]
    (* second program *)
    pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
    Table[Length[Select[IntegerPartitions[n],pml[#]=={1}&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)

Formula

G.f.: 1 + sum(k>=0, x^((k+1)^2)/((1-x)^2*(1-x^2)^2*...*(1-x^k)^2)).

A352833 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k fixed points, k = 0, 1.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 5, 8, 7, 12, 10, 16, 14, 23, 19, 30, 26, 42, 35, 54, 47, 73, 62, 94, 82, 124, 107, 158, 139, 206, 179, 260, 230, 334, 293, 420, 372, 532, 470, 664, 591, 835, 740, 1034, 924, 1288, 1148, 1588, 1422, 1962, 1756, 2404, 2161
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2022

Keywords

Comments

A fixed point of a sequence y is an index y(i) = i. A fixed point of a partition is unique if it exists, so all columns k > 1 are zeros.
Conjecture:
(1) This is A064428 interleaved with A001522.
(2) Reversing rows gives A300788, the strict version of A300787.

Examples

			Triangle begins:
  0: {1,0}
  1: {0,1}
  2: {1,1}
  3: {2,1}
  4: {3,2}
  5: {4,3}
  6: {6,5}
  7: {8,7}
  8: {12,10}
  9: {16,14}
For example, row n = 7 counts the following partitions:
  (7)       (52)
  (61)      (421)
  (511)     (322)
  (43)      (3211)
  (4111)    (2221)
  (331)     (22111)
  (31111)   (1111111)
  (211111)
		

Crossrefs

Row sums are A000041.
The version for permutations is A008290, for nonfixed points A098825.
The columns appear to be A064428 and A001522.
The version counting strong nonexcedances is A114088.
The version for compositions is A238349, rank statistic A352512.
The version for reversed partitions is A238352.
Reversing rows appears to give A300788, the strict case of A300787.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 and A115994 count partitions by their Durfee square.
A330644 counts non-self-conjugate partitions, ranked by A352486.

Programs

  • Mathematica
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    Table[Length[Select[IntegerPartitions[n],pq[#]==k&]],{n,0,15},{k,0,1}]

A026010 a(n) = number of (s(0), s(1), ..., s(n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n and s(0) = 2. Also a(n) = sum of numbers in row n+1 of array T defined in A026009.

Original entry on oeis.org

1, 2, 4, 7, 14, 25, 50, 91, 182, 336, 672, 1254, 2508, 4719, 9438, 17875, 35750, 68068, 136136, 260338, 520676, 999362, 1998724, 3848222, 7696444, 14858000, 29716000, 57500460, 115000920, 222981435, 445962870, 866262915, 1732525830, 3370764540
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) is the number of integer compositions of n + 2 in which the even parts appear as often at even positions as at odd positions (confirmed up to n = 19). - Gus Wiseman, Mar 17 2018

Examples

			The a(3) = 7 compositions of 5 in which the even parts appear as often at even positions as at odd positions are (5), (311), (131), (113), (221), (122), (11111). Missing are (41), (14), (32), (23), (212), (2111), (1211), (1121), (1112). - _Gus Wiseman_, Mar 17 2018
		

Crossrefs

Programs

  • Magma
    [(&+[Binomial(Floor((n+k)/2), Floor(k/2)): k in [0..n]]): n in [0..40]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Array[Sum[Binomial[Floor[(# + k)/2], Floor[k/2]], {k, 0, #}] &, 34, 0] (* Michael De Vlieger, May 16 2018 *)
    Table[2^(-1 + n)*(((2 + 3*#)*Gamma[(1 + #)/2])/(Sqrt[Pi]*Gamma[2 + #/2]) &[n + Mod[n, 2]]), {n,0,40}] (* Peter Pein, Nov 08 2018 *)
    Table[(1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*CatalanNumber[(2*n + 1 - (-1)^n)/4], {n, 0, 40}] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, n--; sum(k=0,n, binomial(floor((n+k)/2), floor(k/2)))) \\ G. C. Greubel, Nov 08 2018
    

Formula

a(2*n) = ((3*n + 1)/(2*n + 1))*C(2*n + 1, n)= A051924(1+n), n>=0, a(2*n-1) = a(2*n)/2 = A097613(1+n), n >= 1. - Herbert Kociemba, May 08 2004
a(n) = Sum_{k=0..n} binomial(floor((n+k)/2), floor(k/2)). - Paul Barry, Jul 15 2004
Inverse binomial transform of A005774: (1, 3, 9, 26, 75, 216, ...). - Gary W. Adamson, Oct 22 2007
Conjecture: (n+3)*a(n) - 2*a(n-1) + (-5*n-3)*a(n-2) + 2*a(n-3) + 4*(n-3)*a(n-4) = 0. - R. J. Mathar, Jun 20 2013
a(n) = (1/2)^((5 - (-1)^n)/2)*(6*n + 7 - 3*(-1)^n)*Catalan((2*n + 1 - (-1)^n)/4), where Catalan is the Catalan number = A000108. - G. C. Greubel, Nov 08 2018

A118199 Number of partitions of n having no parts equal to the size of their Durfee squares.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 40, 53, 68, 89, 113, 146, 184, 234, 293, 369, 458, 572, 706, 874, 1073, 1320, 1611, 1970, 2393, 2909, 3518, 4255, 5122, 6167, 7394, 8862, 10585, 12637, 15038, 17886, 21213, 25141, 29723, 35112, 41383, 48737, 57278
Offset: 0

Views

Author

Emeric Deutsch, Apr 14 2006

Keywords

Comments

a(n) = A118198(n,0).
From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n > 0 that have a fixed point but whose conjugate does not, ranked by A353316. For example, the a(5) = 1 through a(10) = 10 partitions are:
11111 222 322 422 522 622
111111 2221 2222 3222 4222
1111111 3221 4221 5221
22211 22221 22222
11111111 32211 32221
222111 42211
111111111 222211
322111
2221111
1111111111
Partitions w/ a fixed point: A001522 (unproved), ranked by A352827 (cf. A352874).
Partitions w/o a fixed point: A064428 (unproved), ranked by A352826 (cf. A352873).
Partitions w/ a fixed point and a conjugate fixed point: A188674, reverse A325187, ranked by A353317.
Partitions w/o a fixed point or conjugate fixed point: A188674 (shifted).
(End)

Examples

			a(7) = 3 because we have [7] with size of Durfee square 1, [4,3] with size of Durfee square 2 and [3,3,1] with size of Durfee square 2.
		

Crossrefs

Column k=0 of A118198.
A000041 counts partitions, strict A000009.
A000700 = self-conjugate partitions, ranked by A088902, complement A330644.
A002467 counts permutations with a fixed point, complement A000166.
A064410 counts partitions of crank 0, ranked by A342192.
A115720 and A115994 count partitions by Durfee square, rank stat A257990.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352833 counts partitions by fixed points.

Programs

  • Maple
    g:=1+sum(x^(k^2+k)/(1-x^k)/product((1-x^i)^2,i=1..k-1),k=1..20): gser:=series(g,x=0,60): seq(coeff(gser,x,n),n=0..54);
    # second Maple program::
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> add(add(b(k, d) *b(n-d*(d+1)-k, d-1),
                    k=0..n-d*(d+1)), d=0..floor(sqrt(n))):
    seq(a(n), n=0..70);  # Alois P. Heinz, Apr 09 2012
  • Mathematica
    b[n_, i_] :=  b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[Sum[b[k, d]*b[n-d*(d+1)-k, d-1], {k, 0, n-d*(d+1)}], {d, 0, Floor[Sqrt[n]]}]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],pq[#]>0&&pq[conj[#]]==0&]],{n,0,30}] (* a(0) = 0, Gus Wiseman, May 21 2022 *)

Formula

G.f.: 1+sum(x^(k^2+k)/[(1-x^k)*product((1-x^i)^2, i=1..k-1)], k=1..infinity).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (16*n*sqrt(3)). - Vaclav Kotesovec, Jun 12 2025

A300789 Heinz numbers of integer partitions whose Young diagram can be tiled by dominos.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, 25, 27, 28, 29, 34, 36, 37, 39, 40, 43, 46, 48, 49, 52, 53, 55, 57, 61, 62, 63, 64, 70, 71, 75, 76, 79, 81, 82, 84, 85, 87, 88, 89, 90, 91, 94, 100, 101, 107, 108, 111, 112, 113, 115, 116, 117, 118, 121, 129, 130, 131
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is conjectured to be the Heinz numbers of integer partitions in which the odd parts appear as many times in even as in odd positions.

Examples

			Sequence of integer partitions whose Young diagram can be tiled by dominos begins: (), (2), (11), (4), (22), (31), (211), (6), (1111), (8), (42), (51), (33), (222), (411).
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+
          `if`(n=1, 0, a(n-1)) while (l-> add(`if`(l[i]::odd,
           (-1)^i, 0), i=1..nops(l))<>0)(sort(map(i->
           numtheory[pi](i[1])$i[2], ifactors(k)[2]))) do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 22 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Total[(-1)^Flatten[Position[primeMS[#],_?OddQ]]]===0&] (* Conjectured *)

A300787 Number of integer partitions of n in which the even parts appear as often at even positions as at odd positions.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 8, 12, 15, 21, 27, 38, 47, 63, 79, 106, 130, 170, 209, 272, 330, 422, 512, 653, 784, 986, 1183, 1482, 1765, 2191, 2604, 3218, 3804, 4666, 5504, 6726, 7898, 9592, 11240, 13602, 15880, 19122, 22277, 26733, 31048, 37102, 43003, 51232, 59220
Offset: 0

Views

Author

Gus Wiseman, Mar 12 2018

Keywords

Examples

			The a(7) = 8 partitions: (7), (511), (421), (331), (322), (31111), (22111), (1111111). Missing are: (61), (52), (43), (4111), (3211), (2221), (211111).
		

Crossrefs

Even- and odd-indexed terms are A006330 and A001523 respectively, which add up to A000712.

Programs

  • Mathematica
    cobal[y_]:=Sum[(-1)^x,{x,Join@@Position[y,_?EvenQ]}];
    Table[Length[Select[IntegerPartitions[n],cobal[#]===0&]],{n,0,50}]

A353316 Heinz numbers of integer partitions that have a fixed point but whose conjugate does not (counted by A118199).

Original entry on oeis.org

4, 8, 16, 27, 32, 45, 54, 63, 64, 81, 90, 99, 108, 117, 126, 128, 135, 153, 162, 171, 180, 189, 198, 207, 216, 234, 243, 252, 256, 261, 270, 279, 297, 306, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405, 414, 423, 432, 459, 468, 477, 486, 504, 512, 513, 522
Offset: 1

Views

Author

Gus Wiseman, May 15 2022

Keywords

Comments

A fixed point of a sequence y is an index y(i) = i. A fixed point of a partition is unique if it exists.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    4: (1,1)
    8: (1,1,1)
   16: (1,1,1,1)
   27: (2,2,2)
   32: (1,1,1,1,1)
   45: (3,2,2)
   54: (2,2,2,1)
   63: (4,2,2)
   64: (1,1,1,1,1,1)
   81: (2,2,2,2)
   90: (3,2,2,1)
   99: (5,2,2)
  108: (2,2,2,1,1)
  117: (6,2,2)
  126: (4,2,2,1)
  128: (1,1,1,1,1,1,1)
For example, the partition (3,2,2,1) with Heinz number 90 has a fixed point at the second position, but its conjugate (4,3,1) has no fixed points, so 90 is in the sequence.
		

Crossrefs

These partitions are counted by A118199.
Crank: A342192, A352873, A352874; counted by A064410, A064428, A001522.
A000700 counts self-conjugate partitions, ranked by A088902.
A056239 adds up prime indices, row sums of A112798 and A296150.
A115720/A115994 count partitions by their Durfee square, rank stat A257990.
A122111 represents partition conjugation using Heinz numbers.
A238352 counts reversed partitions by fixed points, rank statistic A352822.
A238394 counts reversed partitions without a fixed point, ranked by A352830.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
A352826 ranks partitions w/o a fixed point, counted by A064428 (unproved).
A352827 ranks partitions with a fixed point, counted by A001522 (unproved).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],pq[Reverse[primeMS[#]]]>0&& pq[conj[Reverse[primeMS[#]]]]==0&]

A353318 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k excedances (parts above the diagonal), zeros omitted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 9, 1, 1, 12, 2, 1, 16, 5, 1, 20, 9, 1, 25, 16, 1, 30, 25, 1, 36, 39, 1, 1, 42, 56, 2, 1, 49, 80, 5, 1, 56, 109, 10, 1, 64, 147, 19, 1, 72, 192, 32, 1, 81, 249, 54, 1, 90, 315, 84, 1, 100, 396, 129, 1, 1, 110, 489, 190, 2, 1, 121, 600, 275, 5
Offset: 1

Views

Author

Gus Wiseman, May 21 2022

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   2
   1   4
   1   6
   1   9   1
   1  12   2
   1  16   5
   1  20   9
   1  25  16
   1  30  25
   1  36  39   1
   1  42  56   2
   1  49  80   5
   1  56 109  10
For example, row n = 7 counts the following partitions:
  (1111111)  (7)       (43)
             (52)      (331)
             (61)
             (322)
             (421)
             (511)
             (2221)
             (3211)
             (4111)
             (22111)
             (31111)
             (211111)
		

Crossrefs

Row sums are A000041.
Row lengths are A000194, reversed A003056.
Column k = 1 is A002620, reversed A238875.
Column k = 2 is A097701.
The version for permutations is A008292, opposite A123125.
The weak version is A115720/A115994, rank statistic A257990.
The version for compositions is A352524, weak A352525.
The version for reversed partitions is A353319.
A000700 counts self-conjugate partitions, ranked by A088902.
A001522 counts partitions with a fixed point, ranked by A352827 (unproved).
A064428 counts partitions w/o a fixed point, ranked by A352826 (unproved).
A238352 counts reversed partitions by fixed points, rank statistic A352822.

Programs

  • Mathematica
    partsabove[y_]:=Length[Select[Range[Length[y]],#
    				

A353319 Irregular triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k excedances (parts above the diagonal), all zeros removed.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 4, 2, 1, 5, 4, 2, 7, 6, 2, 10, 6, 6, 15, 7, 7, 1, 18, 14, 7, 3, 26, 15, 11, 4, 35, 17, 19, 6, 47, 24, 19, 11, 61, 33, 22, 18, 1, 80, 44, 28, 20, 4, 103, 54, 42, 25, 7, 138, 60, 57, 31, 11, 175, 85, 58, 52, 15, 224, 112, 66, 64, 24
Offset: 1

Views

Author

Gus Wiseman, May 21 2022

Keywords

Examples

			Triangle begins:
   1
   1  1
   2  1
   2  3
   4  2  1
   5  4  2
   7  6  2
  10  6  6
  15  7  7  1
  18 14  7  3
  26 15 11  4
  35 17 19  6
  47 24 19 11
  61 33 22 18  1
  80 44 28 20  4
For example, row n = 9 counts the following reversed partitions:
  (1134)       (9)     (27)   (234)
  (1224)       (18)    (36)
  (1233)       (117)   (45)
  (11115)      (126)   (135)
  (11124)      (1116)  (144)
  (11133)      (1125)  (225)
  (11223)      (2223)  (333)
  (12222)
  (111114)
  (111123)
  (111222)
  (1111113)
  (1111122)
  (11111112)
  (111111111)
		

Crossrefs

Row sums are A000041.
Row lengths are A003056.
The version for permutations is A008292, opposite A123125.
The weak unreversed version is A115720/A115994, rank statistic A257990.
For fixed points instead of excedances we have A238352, rank stat A352822.
Column k = 0 is A238875.
The version for compositions is A352524, weak A352525.
The version for unreversed partitions is A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A001522 counts partitions with a fixed point, ranked by A352827 (unproved).
A064428 counts partitions w/o a fixed point, ranked by A352826 (unproved).

Programs

  • Mathematica
    partsabove[y_]:=Length[Select[Range[Length[y]],#
    				
Showing 1-10 of 11 results. Next