A024483 a(n) = binomial(2*n, n) mod binomial(2*n-2, n-1).
0, 2, 10, 42, 168, 660, 2574, 10010, 38896, 151164, 587860, 2288132, 8914800, 34767720, 135727830, 530365050, 2074316640, 8119857900, 31810737420, 124718287980, 489325340400, 1921133836440, 7547311500300, 29667795388452, 116686713634848
Offset: 2
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 2..1000
Programs
-
Haskell
a024483 n = a051631 (2*(n-1)) (n-1) -- Reinhard Zumkeller, Nov 13 2011
-
Maple
seq((n-1)*binomial(2*n, n)/(n+1), n=1..25); # Zerinvary Lajos, Feb 28 2007
-
Mathematica
nn=20; d=(1-(1-4x)^(1/2))/(2x); Drop[CoefficientList[Series[1/(1-2x d)-2(d-1), {x,0,nn}],x],1] (* Geoffrey Critzer, Jan 11 2014 *) Table[Mod[Binomial[2 n, n], Binomial[2 n - 2, n - 1]], {n, 2, 26}] (* Michael De Vlieger, Sep 13 2016 *)
-
Sage
def a(n): return n*(n-2)*factorial(2*(n-1))/factorial(n)^2 [a(n) for n in (2..26)] # Peter Luschny, Nov 24 2013
Formula
a(n) = ((n-2)/n)*binomial(2*n-2, n-1) = (n-2)*A000108(n-1). - Vladeta Jovovic, Aug 03 2002
a(n) = 2*binomial(2n-3, n-3) = 2*A002054(n-2). - Ralf Stephan, Jan 15 2004
a(n) ~ 4^(n-1)/sqrt(Pi*n). - Ilya Gutkovskiy, Sep 13 2016
D-finite with recurrence n*a(n) +(-7*n+8)*a(n-1) +6*(2*n-5)*a(n-2)=0. - R. J. Mathar, Apr 27 2020
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=3} 1/a(n) = 5/6 - Pi/(9*sqrt(3)).
Sum_{n>=3} (-1)^(n+1)/a(n) = 26*sqrt(5)*log(phi)/25 - 7/10, where phi is the golden ratio (A001622). (End)
Extensions
More terms from Zerinvary Lajos, Oct 02 2007
Comments