cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024494 a(n) = C(n,1) + C(n,4) + ... + C(n, 3*floor(n/3) + 1).

Original entry on oeis.org

1, 2, 3, 5, 10, 21, 43, 86, 171, 341, 682, 1365, 2731, 5462, 10923, 21845, 43690, 87381, 174763, 349526, 699051, 1398101, 2796202, 5592405, 11184811, 22369622, 44739243, 89478485, 178956970, 357913941, 715827883, 1431655766, 2863311531, 5726623061, 11453246122
Offset: 1

Views

Author

Keywords

Comments

M^n * [1,0,0] = [A024493(n), A024495(n), a(n)], where M is a 3 X 3 matrix [1,1,0; 0,1,1; 1,0,1]. Sum of terms = 2^n. Example: M^5 * [1,0,0] = [11, 11, 10], sum = 2^5 = 32. - Gary W. Adamson, Mar 13 2009
Let M be any endomorphism on any vector space such that M^3 = 1 (identity). Then (1+M)^n = A024493(n) + a(n)*M + A024495(n)*M^2. - Stanislav Sykora, Jun 10 2012

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, 2nd. ed., Problem 38, p. 70.

Crossrefs

See A131708 for another version.

Programs

  • Magma
    [n le 3 select n else 3*Self(n-1) -3*Self(n-2) +2*Self(n-3): n in [1..40]]; // G. C. Greubel, Jan 23 2023
    
  • Mathematica
    nn=20;a=1/(1-x);Drop[CoefficientList[Series[a x /(1-x-x^3 a^2),{x,0,nn}],x],1] (* Geoffrey Critzer, Dec 22 2013 *)
    LinearRecurrence[{3,-3,2}, {1,2,3}, 40] (* G. C. Greubel, Jan 23 2023 *)
  • PARI
    a(n) = sum(k=0,n\3,binomial(n,3*k+1)) /* Michael Somos, Feb 14 2006 */
    
  • PARI
    a(n)=if(n<0, 0, ([1,0,1;1,1,0;0,1,1]^n)[2,1]) /* Michael Somos, Feb 14 2006 */
    
  • SageMath
    def A024494(n): return (1/3)*(2^n -chebyshev_U(n,1/2) +2*chebyshev_U(n-1,1/2))
    [A024494(n) for n in range(1,41)] # G. C. Greubel, Jan 23 2023

Formula

3*a(n) = 2^n + 2*cos( (n-2)*Pi/3 ) = 2^n - A057079(n+2).
G.f.: x*(1-x)/((1-2*x)*(1-x+x^2)). - Paul Barry, Feb 11 2004
a(n) = Sum_{k=0..n} 2^k*2*sin(-Pi*(n-k)/3 + Pi/3)/sqrt(3) (offset 0). - Paul Barry, May 18 2004
G.f.: (x*(1-x^2)*(1-x^3)/(1-x^6))/(1-2*x). - Michael Somos, Feb 14 2006
a(n+1) - 2*a(n) = A010892(n+1). - Michael Somos, Feb 14 2006
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3). - Paul Curtz, Nov 20 2007
Equals binomial transform of (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, ...). - Gary W. Adamson, Jul 03 2008
Start with x(0)=1, y(0)=0, z(0)=0 and set x(n+1) = x(n) + z(n), y(n+1) = y(n) + x(n), z(n+1) = z(n) + y(n). Then a(n) = y(n). - Stanislav Sykora, Jun 10 2012
E.g.f.: exp(x/2)*(exp(3*x/2) - cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Feb 06 2025