cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A024556 Odd squarefree composite numbers.

Original entry on oeis.org

15, 21, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 105, 111, 115, 119, 123, 129, 133, 141, 143, 145, 155, 159, 161, 165, 177, 183, 185, 187, 195, 201, 203, 205, 209, 213, 215, 217, 219, 221, 231, 235, 237, 247, 249, 253, 255, 259, 265, 267, 273
Offset: 1

Views

Author

N. J. A. Sloane, May 22 2000

Keywords

Comments

Composite numbers n such that Sum_{k=1..n-1} floor(k^3/n) = (1/4)*(n-2)*(n^2-1) (equality also holds for all primes). - Benoit Cloitre, Dec 08 2002

Crossrefs

Intersection of A056911 and A071904.
Subsequence of A061346.

Programs

  • Haskell
    a024556 n = a024556_list !! (n-1)
    a024556_list = filter ((== 0) . a010051) $ tail a056911_list
    -- Reinhard Zumkeller, Apr 12 2012
    
  • Mathematica
    Complement[Select[Range[3,281,2],SquareFreeQ],Prime[Range[PrimePi[281]]]] (* Harvey P. Dale, Jan 26 2011 *)
  • PARI
    is(n)=n>1&&n%2&&!isprime(n)&&issquarefree(n) \\ Charles R Greathouse IV, Apr 12 2012
    
  • PARI
    forstep(n=3,273,2,k=omega(n);if(k>1&&bigomega(n)==k,print1(n,", "))) \\ Hugo Pfoertner, Dec 19 2018

Formula

a(n) = (Pi^2/4)*n + O(n/log n). - Charles R Greathouse IV, Mar 12 2025

Extensions

More terms from James Sellers, May 22 2000